
Blitz Identity Provider

version 5.23

Complete guide

Aug 02, 2024

Contents

1 Functional specification 2

2 Administration 9

2.1 Deployment . 9

2.1.1 Deployment architecture . 9

2.1.2 System requirements . 10

Operating systems . 10

Minimum requirements . 10

Recommended requirements for cluster . 11

2.1.3 General installation instructions . 14

Step 1. JDK . 14

Step 2. Memcached . 14

Step 3. DBMS . 15

Step 4. RabbitMQ . 17

Step 5. Blitz Identity Provider . 17

Step 6. Configuration files synchronization . 21

Step 7. Web Server . 23

Step 8. LDAP directory . 24

2.1.4 Express instructions for various operating systems 25

Limitations when using instructions . 26

Rocky Linux, AlmaLinux, Oracle Linux, RHEL . 26

Step 1. JDK . 27

Step 2. Memcached . 27

Step 3. PostgreSQL . 27

Step 4. RabbitMQ . 30

Step 5. 389 Directory Server . 32

Step 6. Nginx . 33

Step 7. Blitz Identity Provider . 33

2.1.5 The first steps after installation . 36

Configure launch options for Blitz Identity Provider services 36

Logging in to Admin console . 38

License key installation . 39

Administrator account management . 40

Restarting Blitz Identity Provider services . 41

Deleting files used for installation . 41

2.2 Basic configuration . 41

2.2.1 User account attributes . 41

What is an account attribute? . 41

Configuring the available attributes . 42

Stored attributes . 42

Computed attributes . 43

Input value conversion rules . 44

Output value conversion rules . 45

Setting up attribute purpose . 45

Connecting attribute storages . 46

Types of storage . 46

i

Connecting storage via LDAP . 47

Connecting to storage via REST . 51

Configuring internal storage . 57

2.2.2 Authentication . 58

How to work with authentication settings . 58

General settings . 60

Password policies . 62

Security key management . 63

Configuring security keys . 63

Logging in via WebAuthn, Passkey, FIDO2 65

Login confirmation with WebAuthn, Passkey, FIDO2, U2F 67

Logging in using login and password . 67

Logging in with electronic signature tool . 71

Configuring the authentication method in the Admin console 71

Using and updating the plug‐in . 73

Logging in via external identification services . 73

Logging in with proxy authentication . 74

Logging in using operating system session . 75

Domain controller (Kerberos server) configuration 76

Settings in Blitz Identity Provider admin console 78

Users’ browsers configuration . 79

Blitz Identity Provider application launch settings 81

Web Server configurations . 81

Debugging operating system session login problems 82

Logging in with email . 82

Step 1. Add the method to blitz.conf . 82

Step 2. Configure the method in the console 83

Logging in with confirmation codes . 84

Logging in from known device . 86

Logging in by one‐time link . 86

Logging in by QR code . 87

Automatic user identification by session properties 88

Step 1. Create the login procedure . 88

Step 2. Add a method to blitz.conf . 88

Step 3. Configure the method in the console 89

Step 4. Customization of texts . 90

Log‐in confirmation with a HMAC‐based one‐time password (HOTP) 91

Time‐based one‐time password log‐in confirmation (TOTP) 92

Binding devices to user accounts . 93

Binding of hardware keyfobs . 93

Binding a mobile application . 95

Confirmation codes sent in SMS and push notifications 96

Confirmation codes sent by email . 98

Log‐in confirmation via Duo Mobile . 99

Re‐confirmation when logging in from known device 102

Confirmation by answering security question . 102

Step 1. Add method to blitz.conf . 102

Step 2. Create directory of security questions 103

Step 3. Configure method in console . 103

Confirmation by incoming call . 104

Step 1. Add the method to blitz.conf . 104

Step 2. Configure the method in the console 105

Configuring an external authentication method . 108

Customizing the Impersonalization Procedure . 109

2.2.3 External identity providers . 109

How to set up login via external identity providers 109

International providers . 110

Apple ID . 110

ii

Google . 115

Facebook . 117

Login via another Blitz Identity Provider setup . 119

Account linking settings . 121

Basic configuration . 122

Advanced configuration . 124

2.2.4 Customizing user services . 126

General settings . 126

User registration . 128

Registration form . 128

Registration service settings . 130

Registration procedure . 131

Changing the text in the User agreement 131

User profile . 131

Displaying user attributes . 132

Additional parameters . 133

Access recovery . 134

Console settings . 134

Form texts . 136

2.2.5 User administration . 137

User account management . 137

User search . 138

Adding a user . 139

View and edit user attributes . 139

Editing attributes . 141

Resetting sessions . 141

Changing the password . 142

View and unlink external providers . 142

Binding devices for 2FA with a one‐time password 142

Binding Duo Mobile . 144

Group Membership Management . 144

Viewing, assigning, and revoking rights . 145

Memorized devices and browsers . 147

Security keys . 148

Permissions granted to applications . 148

Managing user groups . 149

Enabling the display of groups in blitz.conf 149

Working with groups . 150

Access rights management . 151

2.2.6 Notifications and sending messages . 152

Configuring connection to SMS gateway . 153

Connection to the service of sending push notifications 155

Configuring the connection to the SMTP gateway 156

2.3 Access to applications and network services . 157

2.3.1 Registering applications in Blitz Identity Provider 157

About applications . 157

Creating a new application account . 158

2.3.2 Operation schemes of SSO technologies . 162

Connecting a web app via OIDC . 162

Connecting a mobile app via OIDC . 164

Connecting an app via SAML . 166

2.3.3 Configuring SAML and WS‐Federation . 167

Connection via SAML 1.0/1.1/2.0 . 167

Connection via WS‐Federation . 168

Uploading SAML metadata . 169

Configuring SAML attribute . 170

2.3.4 OAuth 2.0 and OpenID Connect 1.0 . 171

Configuring the application . 171

iii

General OAuth 2.0 settings . 175

Adding attributes to an identity token . 177

Configuring Dynamic OAuth 2.0 Client Registration 179

2.3.5 Simple . 181

2.3.6 Interaction via the REST API . 184

2.3.7 Access to network services via RADIUS . 184

Step 1. Configure the RADIUS Server . 185

Step 2. Configure the application . 189

Step 3. Configuration on the network service side 190

2.4 Customization with Java code . 191

2.4.1 Login procedures and their creation . 191

About the login procedures . 191

Creating a procedure . 191

2.4.2 Ready‐made login procedures . 193

Forced two‐factor authentication . 194

Limiting the list of available first factor methods . 194

Log in only with a certain attribute value . 195

Prohibiting login after account expiration . 197

Log in only from certain networks . 197

Prohibition of work in several simultaneous sessions 199

Saving a list of user groups in claims . 199

Displaying an announcement to the user at login 200

Procedure . 200

Adding a procedure to blitz.conf . 202

Request for user to enter attribute or actualize phone and email 202

Requesting the user to enter a security question 205

Registration of security key (WebAuthn, Passkey, FIDO2) at login 206

Display a list of value selections to the user at login 208

Procedure . 208

Adding a procedure to blitz.conf . 209

2.4.3 Functions and methods of various purposes in login procedures 210

Obtaining the user’s geodata . 210

User session reset . 212

Invoking custom errors in script . 213

Analyzing application tags . 214

2.4.4 Customization of the logic of operations with data storages 215

Customization principle . 215

Configuration . 216

Writing a custom procedure . 216

2.4.5 Procedures for binding external user accounts . 217

User registration in external identity provider . 219

Discovering external account name . 220

2.5 Design and UI texts . 221

2.5.1 Login page . 221

Editing the default template . 222

Creating and modifying new templates using the constructor 226

Creating and modifying new templates in manual mode 227

2.5.2 User profile . 230

Header logo . 230

Footer logo . 231

Color scheme customization . 231

2.5.3 Multilanguage support . 231

2.5.4 Interface text settings . 234

Web interface texts . 234

Email and SMS templates . 234

Device and browser names . 240

Messages for different applications . 241

Auxiliary application messages (pipes) . 241

iv

2.5.5 Logos for external provider log‐in buttons . 243

2.6 Configuration file settings . 244

2.6.1 Configuration file list . 244

2.6.2 Settings in blitz.conf file . 245

Logins and passwords . 246

Number of password verifications . 246

Password change at login . 246

System names of login and password fields 246

Attributes . 247

External attribute validator . 247

Attribute translator . 248

CAPTCHA . 249

Queue server . 254

Sending events to queue server . 254

Queue server as a message broker . 255

Stores and databases . 257

Storing objects in Couchbase . 257

Reading the Couchbase Server cluster configuration 257

Object storage time . 258

Advanced PostgreSQL connection settings 258

Advanced LDAP connection settings . 259

Geodatabase . 261

Several DBMSs usage . 261

Blitz Identity Provider domain . 262

Users . 264

Blocking inactive users . 264

Prohibit reuse of the remote user ID . 265

WebAuthn, Passkey, FIDO2, U2F provider certificates 265

OIDC, SAML, and external identity providers . 266

OIDC Discovery service . 266

Call addresses of external providers . 266

External SAML provider . 266

Logging incomplete login attempts . 269

Transferring security events to file or Kafka . 269

Storing application settings in separate files . 277

SSO session duration . 278

2.6.3 Admin console settings . 279

Logging in to admin console via SSO . 279

Session limit . 281

Roles and permissions for the console . 281

Changing console admin password . 282

2.6.4 Configuring Token Exchange . 282

Step 1. Create service access rules . 282

Step 2. Configuring access token exchange . 286

2.7 Security, maintenance, and troubleshooting . 287

2.7.1 Viewing security events . 287

2.7.2 Application performance monitoring . 287

Standard monitoring service . 287

Using Grafana and Prometheus . 290

2.7.3 Problem solving . 291

2.7.4 Security gateway . 293

3 Integration 294

3.1 Preparing for integration . 294

3.1.1 Selecting an interaction protocol . 294

3.2 OIDC application integration . 295

3.2.1 How to register the application correctly . 295

3.2.2 Connecting a web application . 299

v

Connection settings . 299

Ready‐made libraries . 300

Getting the authorization code . 300

Getting tokens . 304

ID token . 309

Checking the access token through the introspection service 312

Verification of the access token by the application 314

Logout . 314

3.2.3 Connecting a mobile app . 317

Connection settings . 317

Ready‐made libraries . 318

Dynamic registration of an application instance . 318

User’s initial login . 320

Getting the authorization code . 320

Getting tokens by an application instance . 322

User re‐login . 323

User switching or logging out . 324

Opening web resources from the application . 324

Login to the application using a QR code . 325

3.2.4 Connecting Smart Device (IoT) applications . 330

General information . 330

Connection settings . 330

Getting the authorization code . 331

Getting a security token . 332

3.2.5 Getting user attributes . 333

3.2.6 Ensuring connection security . 334

3.3 SAML application integration . 334

3.3.1 How to register the application correctly . 334

3.3.2 Connecting the application via SAML . 336

Connection data . 336

Ready‐made libraries . 338

Principle of integration . 339

Identification and authentication . 339

Logout . 339

3.4 User management API . 339

3.4.1 General information . 339

REST API versions . 339

REST API access modes . 340

User access mode . 340

System access mode . 342

3.4.2 Accounts . 346

Registration . 347

Search . 355

Attributes . 357

Getting attributes . 357

Changing an attribute . 358

Changing the phone number . 359

Changing the email address . 362

Passwords . 366

Changing the password . 366

Changing the password of subordinate account 372

Authentication modes . 373

Checking the status . 373

Changing authentication modes . 374

User properties . 375

Obtaining properties . 375

Adding, modifying, and deleting properties 376

TOTP . 378

vi

Checking for TOTP availability . 378

TOTP linking . 379

Deleting the linking . 380

Account status . 381

Checking account status . 381

Changing the account status . 382

External providers . 383

List of external providers . 383

Linking a provider by ID . 383

Linking a provider . 384

Deleting a provider linking . 385

Obtaining a user access token . 385

Audit events . 386

Known devices and sessions . 389

List of known devices . 389

Deleting a device from the list . 389

Resetting user sessions . 390

Security questions . 391

Checking for a question . 391

Checking the answer . 391

Setting or changing a question . 392

Deleting a question . 393

Permissions issued by the user . 393

List of permissions . 393

Revocation of permission . 394

Mobile apps . 394

List of mobile apps . 394

Unlinking from a mobile app account . 395

Deleting an account . 395

3.4.3 User groups . 395

Getting group attributes by id . 396

Search for a group by attribute . 396

Creating a group . 397

Changing group attributes . 398

Deleting a group . 399

Getting a list of users in a group . 399

Adding users . 401

Removing users . 402

3.4.4 Access rights . 403

List of user rights . 404

List of application rights . 404

Rights in relation to the user . 405

Rights in relation to a group of users . 406

Rights in relation to the application . 406

Assignment of rights . 407

Revocation of rights . 410

The rights of the master user in relation to the slave 413

3.5 Advanced features . 416

3.5.1 Additional authentication method . 416

Request handler service . 416

Transmission of the authentication result . 418

Method verification service . 419

3.5.2 Invoking the auxiliary application at the moment of login 419

Request to open the application . 420

Returning the user to Blitz Identity Provider . 420

3.5.3 Administration API . 421

Getting application settings . 423

Application registration . 425

vii

Changing application settings . 427

Deleting an application . 429

3.5.4 Invoking a third‐party user registration application 430

Registration Initiation Service . 430

Registration completion service . 431

3.5.5 Authentication API . 432

Settings for using the API . 433

Interaction scheme . 433

Starting the login process . 435

Logging in using login and password . 437

Login by phone and confirmation code . 442

Logging in with email . 445

Login by QR code . 446

Confirmation of login by confirmation code . 448

4 Modules 451

4.1 Blitz Keeper security gateway . 451

4.1.1 About Blitz Keeper . 451

4.1.2 Installing the blitz‐keeper service . 452

4.1.3 Configuring Blitz Keeper . 453

4.1.4 Creating service access rules . 454

4.1.5 Configuring access token exchange . 454

4.1.6 Viewing logs . 454

4.2 Blitz Panel app showcase . 454

4.2.1 About Blitz Panel . 454

4.2.2 Installing the blitz‐panel service . 455

4.2.3 Blitz Panel configuration . 456

4.2.4 Blitz Panel design and localization . 463

Appearance modification . 463

Adding a language . 463

4.2.5 Viewing logs . 464

viii

Blitz Identity Provider, version 5.23

Blitz Identity Provider protects user accounts ‐ providing out‐of‐the‐box, flexible, customizable and best practice

account protection features.

Blitz Identity Provider provides Internet users access to company websites and mobile applications, as well as

employee access to internal company resources and cloud services.

Key features of Blitz Identity Provider:

• providing a single end‐to‐end user login to applications (Single Sign‐On);

• two‐factor authentication;

• configurable user interface of the login, registration, access recovery, account management pages;

• login using external identity providers: login using social network accounts, federated login using exter‐

nal identity providers;

• checking access rights for user logins to applications;

• verification of user and application access rights using REST‐services;

• logging of access history and account activities.

Contents 1

Chapter 1

Functional specification

Functions group Functions

Single Sign On Technologies

OpenID Connect and OAuth 2.0 RFC 6749 “The OAuth 2.0 Authorization Framework”

OpenID Connect Core 1.0

Sending user attributes as part of id_token/ac‐

cess_token into JSON Web Token (JWT)

Configurable REST service UserInfo, customizable re‐

turned attributes depending on scope

RFC 7636 “Proof Key for Code Exchange by OAuth

Public Clients”

RFC 7662 “OAuth 2.0 Token Introspection”

RFC 7591 “OAuth 2.0 Dynamic Client Registration Pro‐

tocol”

RFC 7592 “OAuth 2.0 Dynamic Client Registration

Management Protocol”

RFC 8252 “OAuth 2.0 for Native Apps”

RFC 8414 “OAuth 2.0 Authorization ServerMetadata”

OpenID Connect RP‐Initiated Logout 1.0

OpenID Connect Front‐Channel Logout 1.0

OpenID Connect Back‐Channel Logout 1.0

SAML SAML Web Browser SSO Profile

SAML Single Logout Profile

RADIUS RFC 2865 “RemoteAuthenticationDial InUser Service

(RADIUS)”

WS‐Federation WS‐Federation (to connect Microsoft applications)

Proxy SSO Connections of web applications receiving session

status from HTTP headers and cookies

Supports ability to send user account login/password

to proxy hosted web application, that doesn’t have

default support for SSO connections

Other Single Sign‐On works between applications that are

connected to IDP using any supported technology (for

example, SSO between OpenID Connect and SAML

applications)

Supports SSO login using Kerberos SSO

Supports SSOwith IBM applications using Ltpa2Token

for Single Sign‐on

Identification and authentication

Logging in using login and password Login/password verification during authentication

continues on next page

2

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Functions group Functions

Ability to use several entities (phone, email, login) as

login simultaneously and enter login in different for‐

mats (e.g. phone as +7…, 8…, with different brackets,

hyphens, spaces)

Remembering login if user has logged in from device

before

Remembering multiple users on the device. Ability

to change the current user account without having to

logout

Event handling “passwordmust be changed” on login.

Changing password during login

Verifying password for compliance with existing pass‐

word policy during login. Recommendation to change

password

Built‐in protection against password brute force (try‐

ing to brute force passwords for one account) and lo‐

gin brute force (trying to brute force a password for a

set of accounts):

• CAPTCHA verification (reCAPTCHA or other ser‐

vice chosen by the Customer)

• temporary blocking of login by account pass‐

word in event of detecting brute force attempts

• user login slowdown (login delay, browser solv‐

ing a computationally complex task ‐ Proof of

Work)

User notification when attempting to login with a re‐

cently changed password

Logging in based on session User identification based on domain login (Kerberos)

Capability to connect login simultaneously tomultiple

domains and provide end‐to‐end user login of from

different domains

Capability to configure that OS session‐based login

applies only to logins from internal networks and PCs,

but not formobile app logins and logins outside of the

internal network

Logging in via social network account/external iden‐

tify provider

Social networks and external identity providers that

support log in of users without the need to edit or

code connectors:

Apple ID, Google, Facebook?

Logging in via an external identity provider with OIDC

support

Logging in via an external identity provider with SAML

support

Account matching/registration during initial login via

a social network

Ability to bind multiple external provider accounts si‐

multaneously to a single user account

Ability to bind multiple user accounts simultaneously

to single external provider account

Ability to program your own algorithm for account

binding and attribute matching

Ability to store access tokens issued by external iden‐

tity providers

continues on next page

3

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Functions group Functions

Logging in based on remembered device Automated identification of the user if the he/she has

logged in from that device before and agreed to re‐

member the login

Allows the user to track which devices have remem‐

bered their login and log out from those devices

Automatic logout from remembered devices if user

changes/recovers password

Automatic identification by session properties Automatic identification of the user by session prop‐

erties. All properties are supported. sessions that

can be defined by the Customer and provided in Blitz

Identity Provider. Flexible method configuration and

full customization of interface texts.

Logging in via WebAuthn, Passkey, FIDO2 Logging in via platform‐independent security keys

FIDO2

Logging in via platform‐specific Passkey / FIDO2

security keys ‐ Windows Hello (pin code, finger‐

print), Passkey, password or Touch ID fromMacBook,

Passkey, Face ID or Touch ID of iOS or Android smart‐

phone or tablet

Logging in via smart card / USB key Logging in via qualified electronic signature

Supported electronic signature tools: CryptoPro CSP

3.9 and higher, VipNet CSP 4.2, Signal‐COM CSP 3.0,

Rutoken, JaCarta, ISBC ESMART, SafeNet eToken

Supported user OS: Windows 8.1/10/11, macOS

10.13/10.14/10.15/11/12/13, Linux Debian 9, Mint

19, Ubuntu 18, Astra Linux 1.7, Red OS 7.3

Supported browsers: Internet Explorer 11, Chrome,

Firefox

Account matching/registration during initial login

based on data from qualified electronic signature cer‐

tificate

Ability to verify signature/certificate validity using

built‐in software features

Ability to verify signature/certificate validity via exter‐

nal verification service

Two‐factor authentication Login confirmation with one‐time password sent by

SMS (SMS‐gateway is provided by Customer)

Login confirmation with a one‐time password from

email

Login confirmation with a one‐time TOTP application

password (RFC 6238 “TOTP: Time‐Based One‐Time

Password Algorithm”)

Login confirmation with a one‐time password from

the hardware keyfob. Support for HOTP keyfobs (RFC

4226 “HOTP: An HMAC‐BasedOne‐Time Password Al‐

gorithm”). The keyfobs are provided by the customer

Login confirmation with security key WebAuthn,

Passkey, FIDO2

Login confirmation with U2F security key

Login confirmation by one‐time password in

push‐notification in customer’s mobile application

(service for sending push‐notifications and mobile

application are provided by the Customer)

Login confirmation with Flash Call

continues on next page

4

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Functions group Functions

Other Ability for a customer to add their own authentication

method

Ability for a customer to customize the appearance of

the login page separately for each application

Providing API, that allows mobile apps to register a

login event and receive security tokens when using

PIN, Touch ID and Face ID logins

Blocking accounts in case of long inactivity

Prohibition of deleted account ID reuse within a spec‐

ified time

Ability to analyze user geodata

Logout

Logout Ending user session when user logs out

Ending user session when the user’s password

changes in another session, or when resetting/recov‐

ering the user’s password

Limitation on acceptable links to return to application

after successful logout

Application notification of a single logout via browser

(front channel)

Application notification of a single logout via server

(back channel)

Access control

Access control Verifying access rules when a user logs into applica‐

tions. Verifying user access rights, membership in

user groups, attributes with required values

Verifying access rules when applications call pro‐

tected REST services via Blitz Keeper (API Security

Gateway)

Account management

Registration Customizable self‐registration web application. You

can customize the set of attributes to be filled in by

the user during registration, email/phone confirma‐

tion requirements, customize the appearance of the

registration page, call the Customer’s verification ser‐

vices

You can configure different user self‐service loginweb

application settings for different scenarios of registra‐

tion invoke

The ability to invoke an external registration applica‐

tion and pass it the login information and data ob‐

tained from an external provider during the login pro‐

cess

After successful registration, the user automatically

logs in to the application, that originally initiated the

registration procedure

CAPTCHA verification (reCAPTCHA or other service

chosen by the Customer)

continues on next page

5

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Functions group Functions

Account security settings Aweb application that allows the user to self‐manage

his/her account security setting:

• ability to change password;

• ability to edit some attributes. Including the

ability to edit phone number with confirmation

via SMS code and the ability to edit email with

confirmation via code/link via email;

• ability to set up two‐factor authentication for

your user account;

• ability to view/edit list of remembered devices,

bound accounts of external login providers;

• ability to view security events with your user

account.

Providing an API to be able to embed all of the above

features to manage account security settings in the

external web application

Forgotten password recovery A web application that allows to recover a forgotten

password with email or mobile confirmation

Additional checks during password recovery from an

account for which two‐factor authentication is en‐

abled

After successful password recovery, the user auto‐

matically logs in to the application, that originally ini‐

tiated the recovery procedure

CAPTCHA verification (reCAPTCHA or other service

chosen by the Customer)

Account actions when login Ability to set a phone number (if not present) in the

account at login time or confirm phone relevance (if

it is time to confirm relevance)

Ability to set a phone number (if not present) in the

account at login time or confirm phone relevance (if

it is time to confirm relevance)

Ability to set an email address (if missing) in the ac‐

count at login time or to confirm the relevance of the

email address (if it is time to confirm relevance)

Ability to issue a Passkey at the moment of login (cus‐

tomize Face ID / Touch ID login)

Ability to show the user an announcement

Ability to request consent from the user

Ability to request the user to fill in a text attribute

Ability to ask a security question at the moment of

login

Ability to build your own business process of inter‐

action with the user at login to the application (e.g.,

display an informational message to the user in some

situations or request to lead something)

Password policies Password verification for compliance with password

policies: minimum length, alphabetical require‐

ments, prohibition of dictionary passwords, no dupli‐

cate passwords, expiration validation

Advanced features

Customization of the logic of work using Java pro‐

gramming

Setting user login rules for applications through login

and registration procedures

continues on next page

6

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Functions group Functions

Customization of data storage operations

Monitoring and auditing

Alerts users about security events Notification of users of security events with their

accounts: login from an unusual device, password

change (changed it yourself, password reset by ad‐

ministrator, password reset due to password recov‐

ery), binding to a social network, enabling/disabling

two‐factor authentication

Ability to configure notification events and notifica‐

tion texts for SMS and email

Security events logging Logging of successful and unsuccessful security

events with the account: login events, registra‐

tion, change of security settings, password recov‐

ery. Both user‐initiated and administrator‐initiated

actions should be logged

Logging of successful and unsuccessful security

events with the account: login events, registra‐

tion, change of security settings, password recov‐

ery. Both user‐initiated and administrator‐initiated

actions should be logged

Matching IP‐addresses to geodata in events and no‐

tifications (database in mmdb format with geodata is

provided by the Customer)

Administrators interface for searching/viewing secu‐

rity events

Logging security events: to the database, to a log file,

to Kafka

Monitoring Ability to invoke metrics and statistics collection sys‐

tems, antifraud systems at user login

Ability to monitor components from external moni‐

toring system (Zabbix and similar). Ability to provide

Prometheus metrics

Grafana dashboard templates and Prometheus job

assignments are available

Queues Ability to queue RabbitMQ events associated with

user accounts and access groups

Ability to send security events to Kafka

Administration

continues on next page

7

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Functions group Functions

Administration Admin web application:

• configuring connected application settings

(application parameters, allowed interaction

modes, access control rules)

• configuring user attributes and mapping at‐

tributes to an account store

• configuring connection to LDAP‐based account

stores

• configuring connection to random stores (ser‐

vice is provided by the Customer)

• support of simultaneous connection to multi‐

ple account stores

• configuring identity/authentication methods

and external login providers

• configuring the connection to SMTP service

and SMS gateway

• support for role‐based access for logging into

the administrator web application. Ability to

set different actions available for different users

• administration of web application registration

settings, security settings, password recovery

settings

• user account administration (search, view,

manage attributes, two‐factor authentication

settings, bindings of memorized devices and

social networks, memorized user browsers, re‐

set sessions, reset password, lock/unlock ac‐

count, manage security keys, manage mem‐

bership in user groups, assign/revoke access

rights)

• administration of user groups, management of

user group memberships

• configuring web applications login page

themes

• viewing and filtering of logged security events

• ability to enter admin web application via SSO

Admin interface in English and Russian

Ability to add additional languages

8

Chapter 2

Administration

2.1 Deployment

2.1.1 Deployment architecture

The operation of Blitz Identity Provider is based on the interaction of the following architectural components:

1. Web Server. You can use your company’s existing web server to load balance and remove SSL encryption

from incoming traffic.

2. Blitz Identity Provider services:

• blitz-console – admin console Blitz Console;

• blitz-idp ‐ authentication service and User profile;

• blitz-registration – registration service;

• blitz-recovery – access recovery service;

• blitz-keeper – security gateway (page 451);

• blitz-panel – a :ref:panel <blitz-panel> that provides users with quick access to con‐

nected applications.

Note: Registration and access recovery services, the security gateway and the panel do not have to be

installed, if you don’t intend to use their associated features.

3. DBMS. You can use Couchbase Server, PostgreSQL, Postgres Pro.

Attention: Interaction of Blitz Identity Provider with PostgreSQL is performed via JDBC. Any relational

DBMS with JDBC support can be used instead of PostgreSQL, but it should be separately agreed with

our technical specialists within the framework of the corresponding implementation projects.

• Couchbase Server ‐ recommended for building authentication systems with a peak load of over 1000

requests in a second, more than 1 mln authentications per day and with high fault tolerance require‐

ments.

• PostgreSQL (or other relational DBMS supporting JDBC) ‐ recommendedwhen creating authentication

systems with moderate load and medium requirements for fault tolerance, as well as when using

domestic operating systems.

4. Account and password repository. You can use either an existing or specially deployed in your organization

repository of accounts for its storage.

9

Blitz Identity Provider, version 5.23

Supported:

• LDAP‐compliant storage. It can be any server supporting LDAP protocol, as well as Microsoft Active

Directory, Samba4, FreeIPA;

• other types of repositories, to connect Blitz Identity Provider to them you need to develop special

REST‐services.

If you need to deploy a new LDAP directory, it is recommended that you use 389 Directory Server, which is

included with the OS, as your LDAP directory.

5. Optional Queue server – used by RabbitMQ. You can also configure the transmission of security events

to Kafka. Installing a RabbitMQ queue server is required if the queue server will be used for transmitting

events to adjacent systems (page 254) or asmessage broker (page 255).

Deployment is possible in a configuration withminimal resources (page 10) or in cluster configuration (page 11).

2.1.2 System requirements

Operating systems

All Blitz Identity Provider installation options and the server types involved support the following operating sys‐

tems:

CentOS 7/8 Rocky Linux 8/9 AlmaLinux 8/9 RHEL 7/8/9 Oracle Linux 8/9

Minimum requirements

Deployments with medium availability and performance requirements are recommended for preparation of test

environments and production loops. Follow the scheme below.

2 virtual machines (hereinafter ‐ VMs) with the following characteristics and roles is a minimum requirement for

the deployment.

Minimum sever requirements for deployment

Description Technical specifi‐

cations

Software

VM for

Applications

(VM APP)

4 CPU cores, 8 GB

RAM, 50 GB HDD

(HDD)

Blitz Identity Provider: blitz-idp, blitz-console, blitz-reg-
istration, blitz-recovery, blitz-keeper, blitz-panel;
JDK, nginx, memcached

Database

VM (VM DB)

4 CPU cores, 8

GB RAM, 100 GB

HDD

PostgreSQL (9.6 or later) or Couchbase Server Community Edition (6.0 or

later), 389 Directory Server or FreeIPA; RabbitMQ (optional)

2.1. Deployment 10

Blitz Identity Provider, version 5.23

Required software versions:

• OpenJDK 11 and Oracle JDK 11;

• Memcached memory manager version 1.4.15 or higher.

Network connectivity requirements:

• VM‐APP shall be accessible via 80, 443 (HTTP/HTTPS) from user networks;

• VM‐APP must have access:

– to VM‐DB via 8091, 8092, 8093, 11209, 11210, 11211, 4369, 21100 to 21199, 11214,
11215, 18091, 18092 (standard Couchbase Server ports), 5432 (standard PostgreSQL port), 389,
636 (standard LDAP ports), 5672 (standard RabbitMQ port);

– to external identity provider services via 443 port (if used):

Links to the external identity provider services

Type Reference

Social networks https://appleid.apple.com
https://accounts.google.com
https://graph.facebook.com?

– to SMS gateway (if used);

– to SMTP (if used);

– to push notification service (if you use it);

– to the Kafka service (when used to receive security reports).

For VM‐APP, you need to create a public DNS name (for example, auth.domain.ru) and issue a TLS certificate
for auth.domain.ru or *.domain.ru.

Recommended requirements for cluster

Deployment in a cluster configuration is shown in the scheme below. Comply with the given requirements when

building productive authentication loops with high availability and peak performance requirements.

2.1. Deployment 11

Blitz Identity Provider, version 5.23

For deployment in a cluster configuration, it is recommended to use Virtual Machines (VMs) with the character‐

istics and functions listed in the table below.

Recommended server requirements for deployment in a cluster

Description Q‐ty Technical specifications Software

VM for

web‐servers

(VM‐WEB)

1‐2 4 CPU cores, 4 GB RAM, 50 GB HDD nginx

VM for Blitz

Identity

Provider

applications

(VM‐APP)

2 4 CPU cores, 8 GB RAM, 50 GB HDD (HDD) Blitz Identity Provider:

blitz-idp, blitz-reg-
istration, blitz-re-
covery, blitz-keeper;
blitz-panel; memcached,
JDK

VM for

console

(VM‐ADM)

1 2 CPU cores, 4 GB RAM, 100 GB HDD memcached, JDK; Blitz Identity

Provider: blitz-console

VM for

DBMS

(VM‐DB):

2‐3 For PostgreSQL: 4 CPU cores, 8 GB RAM, 100 GB

HDD (data), 50 GB HDD (system). For Couchbase

Server3: 8 CPU cores, 16 GB RAM, 500 GB HDD

(data), 100 GB SSD (indexes), 50 GB HDD (sys‐

tem).

PostgreSQL software (9.6 or later)

or Couchbase Server Community

Edition (6.0 or later)

VM ofr LDAP

(VM‐LDAP)

2 4 CPU cores, 8 GB RAM, 100 GB HDD 389 Directory Server

VM for

Queue

server

(VM‐MQ)

1‐2 4 CPU cores, 8 GB RAM, 50 GB HDD (HDD) RabbitMQ version 3.7.9

VM for

the Load

balancer

(VM‐NLB)

1‐2 2 CPU cores, 4 GB RAM, 50 GB HDD HAProxy, keepalived

Tip:

• VM-WEB:

You can use an existing web server to load balance and remove TLS from incoming traffic.

• VM-APP:

Under heavy load, it is recommended to deploy Blitz Identity Provider services in its own clusters on sepa‐

rate servers.

• VM-ADM:

It is recommended to configure this server to collect logs from the other servers of the cluster.

• VM-DB:

For PostgreSQL, it is recommended to allocate onephysical server for themain instance andone for standby.

For Couchbase Server it is recommended minimum4 3 VMs.

• VM-LDAP:

As a storage you can use an existing storage based on LDAP, Microsoft Active Directory, FreeIPA, or any

other system for storing accounts and passwords (with the help of a relevant REST connector).

3 https://docs.couchbase.com/server/current/install/install‐linux.html
4 https://docs.couchbase.com/server/current/install/deployment‐considerations‐lt‐3nodes.html

2.1. Deployment 12

https://docs.couchbase.com/server/current/install/install-linux.html
https://docs.couchbase.com/server/current/install/install-linux.html
https://docs.couchbase.com/server/current/install/deployment-considerations-lt-3nodes.html

Blitz Identity Provider, version 5.23

• VM-MQ:

Using a queue server is optional.

• VM-NLB:

Internal balancer is needed if LDAP and queue server are clustered.

Required software versions:

• OpenJDK 11 or Oracle JDK 11;

• Memcached memory manager version 1.4.15 or higher;

Network connectivity requirements:

• VM‐WEB shall be accessible via 80, 443 (HTTP/HTTPS) from user networks;

• VM‐WEBmust have access to VM‐APP via 9000 (blitz-idp), 9002 (blitz-registration), 9003
(blitz-recovery), 9012 (blitz-keeper), 9013 (blitz-panel) and to VM‐ADM via 9001
(blitz-console);

• VM‐APP must have access:

– to other VM‐APPs and VM‐ADMs via 11211 (memcached);

– to VM‐DB via 8091, 8092, 8093, 11209, 11210, 11211, 4369, 21100 to 21199, 11214,
11215, 18091, 18092 (standard Couchbase Server ports) or 5432 (standard PostgreSQL port);

– to VM‐LDAP (VM‐NLB) via 389, 636 (standard LDAP ports);

– to VM‐MQ (VM‐NLB) via 5672 (the standard RabbitMQ port);

– to external identity provider services via 443 port (if used):

Links to the external identity provider services

Type Reference

Social networks https://appleid.apple.com
https://accounts.google.com
https://graph.facebook.com?

– to the SMS gateway (if used);

– to SMTP (if used);

– to push notification service (if you use it);

– to the Kafka service (when used to receive security reports).

• VM‐ADMmust have access:

– to VM‐DB via 8091, 8092, 8093, 11209, 11210, 11211, 4369, 21100 to 21199, 11214,
11215, 18091, 18092 (standard Couchbase Server ports) or 5432 (standard PostgreSQL port);

– to VM‐LDAP (VM_NLB) via 389, 636 (standard LDAP ports);

– to VM‐APP via 22 (ssh), 514 (rsyslog), 873 (rsync), 11211 (memcached);

– to VM‐MQ (VM‐NLB) via 5672 (the standard RabbitMQ port);

– to the Kafka service (when using it to receive security reports)

2.1. Deployment 13

Blitz Identity Provider, version 5.23

• from the VM‐DB shall have access to other VM‐DBs via 8091, 8092, 8093, 11209, 11210, 11211,
4369, 21100 ‐ 21199, 11214, 11215, 18091, 18092 (Couchbase Server ports) or 5432 (PostgreSQL

port);

• with VM‐LDAP there must be access to other VM‐LDAPs via 389, 636 (LDAP ports);

• from the VM‐MQ must have access to other VM‐MQs via 4369, 35197, 5672.

For VM‐APP, you need to create a public DNS name (for example, auth.domain.ru) and issue a TLS certificate
for auth.domain.ru or *.domain.ru.

2.1.3 General installation instructions

Blitz Identity Provider installation generally proceeds in the order described below.

Tip: Depending on the operating system used, there are specifics on how to install the required environment.

For convenience, follow express instructions (page 26).

Important: Before getting started with deployment, learn Blitz Identity Provider deployment architecture

(page 9).

Step 1. JDK

On the servers designated to install Blitz Identity Provider server software and Blitz Identity Provider admin con‐

sole, you must install and configure JDK 11 according to the official documentation, using one of the following

products:

• OpenJDK 11;

Note: To install OpenJDK 11 in CentOS and RHEL, run the command:

sudo yum install java-11-openjdk-devel

• Liberica JDK 118;

• Oracle JDK 119.

Step 2. Memcached

Attention: The memcached version must be 1.4.15 or higher. The memcached service must be in‐

stalled on the servers intended for installing Blitz Identity Provider services: blitz-console,blitz-idp,
blitz-registration, blitz-recovery.

CentOS and RHEL

1. Run the command:

yum -y install memcached

8 https://docs.bell‐sw.com/liberica‐jdk/11.0.23b12/general/install‐guide/
9 https://www.oracle.com/java/technologies/javase/jdk11‐archive‐downloads.html

2.1. Deployment 14

https://docs.bell-sw.com/liberica-jdk/11.0.23b12/general/install-guide/
https://www.oracle.com/java/technologies/javase/jdk11-archive-downloads.html

Blitz Identity Provider, version 5.23

2. After installation is complete, add the memcached service to the autorun and start the service:

systemctl enable memcached
systemctl start memcached

Important: The memcached service runs on port 11211. Make sure that this port is open on firewalls and can

be used to connect between servers with Blitz Identity Provider services.

Step 3. DBMS

Couchbase Server Installation

Couchbase Server installation guidelines are provided for CentOS 7 and RHEL 7.

1. You must install Couchbase Server on each of the servers allocated for DBMS installation according to the

instructions10. The Couchbase Server distribution package is available for download11.

Important: In DEV/TEST environments, it is acceptable to install Couchbase Server on existing servers with

Blitz Identity Provider, but in this case you have to take into account that Couchbase Server uses its own

built‐in Memcached service, and to avoid a conflict you need to adjust the Memcached ports used in Blitz

Identity Provider and Couchbase Server.

2. Add the Couchbase Server service to the autorun and start the service:

systemctl enable couchbase-server
systemctl start couchbase-server

3. Check if the service is running by executing the command:

systemctl status couchbase-server

4. Initialize Couchbase Server cluster on each server according to instructions12 (the first server initializes the

cluster, other servers are included in the cluster). All settings can be set as suggested by default, only you

need to set the full server name for each server in hostname. It is not recommended to use the IP address

of the server as the server name.

5. On any of the hosts in the Couchbase Server cluster, run the script to prepare Couchbase Server to use

Blitz Identity Provider. The script is located in the couchbase directory in the resources.zip archive

as part of Blitz Identity Provider distribution kit. Copy the script to any server in the Couchbase Server

cluster, go to the directory, and execute the script to create buckets that will store Blitz Identity Provider

information and indexes for executing Blitz Identity Provider search queries in the database:

./cb_init.sh

The script will need to be entered during execution:

• Couchbase Server URL name ‐ enter a string like http://<hostname>:8091, where hostname

is the host name of the server from which the script is executed;

• Couchbase Server administrator account login ‐ set during cluster initialization when you perform the

previous step of the instructions;

10 https://docs.couchbase.com/server/current/install/install‐linux.html
11 https://www.couchbase.com/downloads
12 https://docs.couchbase.com/server/current/manage/manage‐nodes/initialize‐node.html

2.1. Deployment 15

https://docs.couchbase.com/server/current/install/install-linux.html
https://docs.couchbase.com/server/current/install/install-linux.html
https://www.couchbase.com/downloads
https://docs.couchbase.com/server/current/manage/manage-nodes/initialize-node.html

Blitz Identity Provider, version 5.23

• Couchbase Server administrator account password ‐ set during cluster initializationwhen you perform

the previous step of the instructions;

• Couchbase Server account login ‐ set during the running of Blitz Identity Provider service connection

script;

Tip: It is recommended to name it blitz.

• Couchbase Server account password for Blitz Identity Provider application connection.

6. After running the script, make the following settings:

1. In the Couchbase Server administration console, edit the settings for the number of data copies on

different Couchbase instances. To do this, select each bucket in turn in the Buckets menu, click Edit

on it and set the Enable setting in the Replicas block and set the number of replicas. For a cluster

of 3 servers it is recommended to set 1 for the number of replicas. Then, it is recommended to en‐

able the Enable auto‐failover setting in the Settings menu and set the Timeout value to 30 seconds

(auto‐failover will work only if the DBMS cluster has at least 3 servers and bucket replication is con‐

figured).

2. Set up a database backup13.

PostgreSQL installation and configuration

Attention: PostgreSQL must be 9.6 or a later version.

CentOS and RHEL

PostgreSQL must be installed according to the instructions15.

After installing PostgreSQL, run scripts to prepare PostgreSQL to use Blitz Identity Provider. The scripts are located

in the postgres directory in the resources.zip archive as part of Blitz Identity Provider distribution kit.

Copy the scripts to the PostgreSQL server, go to the directory, and execute the following commands one by one:

su - postgres

createdb blitzdb

psql
CREATE USER blitz WITH ENCRYPTED PASSWORD 'set-your-pwd';
GRANT ALL PRIVILEGES ON DATABASE blitzdb TO blitz;
GRANT ALL ON ALL TABLES IN SCHEMA public TO blitz;

psql -d blitzdb -U blitz -f 000-SCRIPT000.sql
…
psql -d blitzdb -U blitz -f NNN-SCRIPTNNN.sql

Instead of set-your-pwd you should insert the password that will be used to connect to PostgreSQL.

Instead of000-SCRIPT000.sql … NNN-SCRIPTNNN.sql you should insert the names of scripts from the

postgres/ddl directory from the resources.zip archive. For example:

psql -d blitzdb -U blitz -f 000-service-tasks.sql
psql -d blitzdb -U blitz -f 001-init-database.sql
psql -d blitzdb -U blitz -f 002-new_pp_columns.sql

(continues on next page)

13 https://docs.couchbase.com/server/current/manage/manage‐backup‐and‐restore/manage‐backup‐and‐restore.html
15 https://www.postgresql.org/download/linux/redhat/

2.1. Deployment 16

https://docs.couchbase.com/server/current/manage/manage-backup-and-restore/manage-backup-and-restore.html
https://www.postgresql.org/download/linux/redhat/

Blitz Identity Provider, version 5.23

(continued from previous page)

psql -d blitzdb -U blitz -f 003-usd_id_table.sql
psql -d blitzdb -U blitz -f 004-usr_auth_table.sql
psql -d blitzdb -U blitz -f 005-usr_agt_table.sql
psql -d blitzdb -U blitz -f 006-usr_htp_hmc_alg.sql
psql -d blitzdb -U blitz -f 007-usr_atr_cfm.sql
psql -d blitzdb -U blitz -f 008-wak.sql
psql -d blitzdb -U blitz -f 009-fix_pp_column.sql
psql -d blitzdb -U blitz -f 010-add_usr_prp.sql
psql -d blitzdb -U blitz -f 011-pp_audit.sql
psql -d blitzdb -U blitz -f 012-geo_to_audit.sql
psql -d blitzdb -U blitz -f 013-tasks.sql
psql -d blitzdb -U blitz -f 014-sec_ch_ua.sql
psql -d blitzdb -U blitz -f 015-5.12.0.sql
psql -d blitzdb -U blitz -f 016-5.13.0.sql
psql -d blitzdb -U blitz -f 017-5.15.0.sql
psql -d blitzdb -U blitz -f 018-5.17.0.sql
psql -d blitzdb -U blitz -f 019-5.18.0.sql
psql -d blitzdb -U blitz -f 020-5.20.0.sql
psql -d blitzdb -U blitz -f 021-5.21.0.sql
psql -d blitzdb -U blitz -f 022-5.23.0.sql

After running the script, set up a database backup16.

Step 4. RabbitMQ

Optional

Installation of the RabbitMQ Queue server is optional and is required if the Queue server is to be used to pass

events to adjacent systems (page 254) or as amessage broker (page 255).

CentOS and RHEL

You need to install RabbitMQ according to instructions18.

Step 5. Blitz Identity Provider

To install the blitz-console, blitz-idp, blitz-registration, and blitz-recovery services,

use the unified blitz-5.X.X.bin installer.

Important: You can install the admin console on any server where the Blitz Identity Provider server is installed,

but it is recommended that a separate administrative server be dedicated to the installation of the admin console.

The JDK (page 14) andmemcached (page 14) must be installed on the server beforehand.

To install blitz-console, blitz-idp, blitz-registration, blitz-recovery applications you

need to:

1. Copy blitz-5.X.X.X.bin``file (for example, to ``/tmp directory) from Blitz Identity

Provider distribution kit to the servers intended for installation.

2. Run the blitz-5.X.X.bin installer with the following start options:

• -i – list of applications to be installed, separated by a space (for example, idp console regis-
tration recovery);

• -j – the JAVA_HOME value is the directory of JDK installation.

16 https://postgrespro.ru/docs/postgresql/9.6/backup‐dump#backup‐dump‐all
18 https://www.rabbitmq.com/install‐rpm.html

2.1. Deployment 17

https://postgrespro.ru/docs/postgresql/9.6/backup-dump#backup-dump-all
https://www.rabbitmq.com/install-rpm.html

Blitz Identity Provider, version 5.23

It will be installed in directory /usr/share/identityblitz.

Listing 1: Installer launch example

cd /tmp
chmod +x blitz-5.X.X.bin
./blitz-5.X.X.bin -- -j /opt/oracle/jdk -i "idp console recovery registration"

Listing 2: Console during the installation process

Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing Blitz IDP 100%
**
Application blitz-registration installed
Application blitz-recovery installed
Application blitz-console installed
Application blitz-idp installed
**

3. Create the blitz_param.txt file with initial Blitz Identity Provider settings:

Couchbase Server

• DOMAIN – external domain name where Blitz Identity Provider will be running on;

• ROOT_CONTEXT – URL path where Blitz Identity Provider will be running on;

Note: If not specified, it will be /blitz by default.

• ADMIN_USER_NAME – administrator account in Blitz Identity Provider;

Note: If not specified, it will be admin by default.

• ADMIN_PASSWORD – password for the administrator account in Blitz Identity Provider;

• KEYSTORE_PASSWORD – password for a key container that will be created during the installation;

Note: If the ADMIN_PASSWORD and KEYSTORE_PASSWORD parameters are not specified,

these passwords will automatically be generated and displayed as a result of the configuration

script execution.

• MEMCACHED_SERVERS – memcached servers addresses;

• DB_MODE – DBMS in use: CB for Couchbase Server;

• CB_NODES – addresses of servers in the Couchbase Server DBMS;

• CB_USERNAME – account name in the Couchbase Server DBMS (blitz by default);

• CB_ PASSWORD – account password in the Couchbase Server DBMS;

• TRUSTED_SERVERS – addresses of subnets of servers with Blitz Identity Provider services (by de‐

fault 127.0.0.1/32).

2.1. Deployment 18

Blitz Identity Provider, version 5.23

Listing 3: The example of configuration file

DOMAIN=test
MEMCACHED_SERVERS="192.168.122.10 127.0.0.1"
DB_MODE=CB
CB_NODES="192.168.122.20 192.168.122.21 192.168.122.22"
CB_USERNAME=blitz
CB_PASSWORD=12ABcd45

PostgreSQL

• DOMAIN – external domain name where Blitz Identity Provider will be running on;

• ROOT_CONTEXT – URL path where Blitz Identity Provider will be running on;

Note: If not specified, it will be /blitz by default.

• ADMIN_USER_NAME – administrator account in Blitz Identity Provider;

Note: If not specified, it will be admin by default.

• ADMIN_PASSWORD – password for the administrator account in Blitz Identity Provider;

• KEYSTORE_PASSWORD – password for a key container that will be created during the installation;

Note: If the ADMIN_PASSWORD and KEYSTORE_PASSWORD parameters are not specified,

these passwords will automatically be generated and displayed as a result of the configuration

script execution.

• MEMCACHED_SERVERS – memcached servers addresses;

• DB_MODE – DBMS in use: PG for PostgreSQL;

• PG_HOSTNAME – PostgreSQL DBMS address;

• PG_DB_NAME – database name in the PostgreSQL DBMS;

Tip: It is recommended to set blitzdb.

• PG_USER_NAME – account name in the PostgreSQL DBMS;

Tip: It is recommended to set blitz.

• PG_USER_PASSWORD – account password in the PostgreSQL DBMS;

• TRUSTED_SERVERS – addresses of subnets of servers with Blitz Identity Provider services (by de‐

fault 127.0.0.1/32).

Listing 4: The example of configuration file

DOMAIN=test
ROOT_CONTEXT=/blitz
MEMCACHED_SERVERS="127.0.0.1 192.168.122.96"
DB_MODE=PG

(continues on next page)

2.1. Deployment 19

Blitz Identity Provider, version 5.23

(continued from previous page)

PG_HOSTNAME=192.168.122.20
PG_DB_NAME=blitzdb
PG_USERNAME=blitz
PG_PASSWORD=123456
TRUSTED_SERVERS="127.0.0.1/32 192.168.122.96/32 192.168.122.0/24"
ADMIN_USERNAME=admin1
ADMIN_PASSWORD=0123456789
KEYSTORE_PASSWORD=0123456789

4. Run Blitz Identity Provider initial setup script with the right path to the blitz_param.txt file:

/usr/share/identityblitz/blitz-console/bin/configure -f blitz_param.txt

The script will prepare the configuration files, generate and display the Blitz Identity Provider administrator

login and password, and generate a password for the key container:

**
Your instance is configured on domain: test.loc
The Administration Console available on addresses:
http://testinstallation.local:9001/blitz/console

Administration user credentials of Console:
username - admin
password - 98aAB0D3f2

Your can change user credentials at file - /usr/share/identityblitz/blitz-
→˓config/credentials

Create keystore /usr/share/identityblitz/blitz-config/blitz-keystore.bks and␣
→˓generate:
- JWS(RSA256) keypair - jws_rs256_rsa_default
- AES(AES128) security key - jdbc

Generated password for keystore: BeEBcd2239
**

Tip: If input errors were made when running the installer, so that the installation was performed with

incorrect parameters, you can use the following command to delete the files that the installer created so

that you can perform a clean installation again:

rm -rf /usr/share/identityblitz /etc/default/blitz-* /etc/blitz-* /var/log/
→˓identityblitz/ /lib/systemd/system/blitz-*

5. Add services to autorun on their respective servers and run them:

systemctl enable blitz-console
systemctl start blitz-console
systemctl enable blitz-idp
systemctl start blitz-idp
systemctl enable blitz-registration
systemctl start blitz-registration
systemctl enable blitz-recovery
systemctl start blitz-recovery

2.1. Deployment 20

Blitz Identity Provider, version 5.23

Step 6. Configuration files synchronization

Only for installation in a cluster

When you deploy Blitz Identity Provider in a cluster, youmust configure synchronization of configuration between

Blitz Identity Provider cluster servers:

Actions to take on the Blitz Identity Provider admin console server

1. Install rsync and incron:

sudo yum install rsync incron

2. To switch to user blitz:

sudo su - blitz

3. Generate an ssh‐key with the command (it is recommended to choose the default answers for all the

prompts by the utility):

ssh-keygen

4. Read and save the public ssh‐key for future use:

cat /usr/share/identityblitz/.ssh/id_rsa.pub

5. Open the incrontab settings:

incrontab -e

In the opened editor window, insert the following:

/usr/share/identityblitz/blitz-config IN_MODIFY,IN_ATTRIB,IN_CREATE,IN_DELETE,
→˓IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh ./ $# $%
/usr/share/identityblitz/blitz-config/assets IN_MODIFY,IN_ATTRIB,IN_CREATE,IN_
→˓DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh assets
→˓$# $%
/usr/share/identityblitz/blitz-config/assets/services IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh assets $# $%
/usr/share/identityblitz/blitz-config/assets/themes IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh assets $# $%
/usr/share/identityblitz/blitz-config/apps IN_MODIFY,IN_ATTRIB,IN_CREATE,IN_
→˓DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh apps $
→˓# $%
/usr/share/identityblitz/blitz-config/saml IN_MODIFY,IN_ATTRIB,IN_CREATE,IN_
→˓DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh saml $
→˓# $%
/usr/share/identityblitz/blitz-config/saml/conf IN_MODIFY,IN_ATTRIB,IN_CREATE,
→˓IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh␣
→˓saml $# $%
/usr/share/identityblitz/blitz-config/saml/credentials IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh saml $# $%
/usr/share/identityblitz/blitz-config/saml/metadata IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh saml $# $%

(continues on next page)

2.1. Deployment 21

Blitz Identity Provider, version 5.23

(continued from previous page)

/usr/share/identityblitz/blitz-config/custom_messages IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh custom_messages $# $%
/usr/share/identityblitz/blitz-config/custom_messages/dics IN_MODIFY,IN_ATTRIB,
→˓IN_CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_
→˓sync.sh custom_messages $# $%
/usr/share/identityblitz/blitz-config/devices IN_MODIFY,IN_ATTRIB,IN_CREATE,IN_
→˓DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh␣
→˓devices $# $%
/usr/share/identityblitz/blitz-config/simple IN_MODIFY,IN_ATTRIB,IN_CREATE,IN_
→˓DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh simple
→˓$# $%
/usr/share/identityblitz/blitz-config/certs IN_MODIFY,IN_ATTRIB,IN_CREATE,IN_
→˓DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh certs $
→˓# $%
/usr/share/identityblitz/blitz-config/flows/login IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh flows $# $%
/usr/share/identityblitz/blitz-config/flows/reg IN_MODIFY,IN_ATTRIB,IN_CREATE,
→˓IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.sh␣
→˓flows $# $%
/usr/share/identityblitz/blitz-config/flows/extIdps IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh flows $# $%
/usr/share/identityblitz/blitz-config/token_exchange IN_MODIFY,IN_ATTRIB,IN_
→˓CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_sync.
→˓sh token_exchange $# $%
/usr/share/identityblitz/blitz-config/token_exchange/rules IN_MODIFY,IN_ATTRIB,
→˓IN_CREATE,IN_DELETE,IN_CLOSE_WRITE /usr/share/identityblitz/scripts/config_
→˓sync.sh token_exchange $# $%

6. Create a file/usr/share/identityblitz/scripts/config_sync.sh and paste the script into
it:

#!/bin/bash
app_dir=/usr/share/identityblitz/blitz-config
node_list="NODES_LIST"
for node in $(echo "${node_list}"); do
rsync -r -a --delete ${app_dir}/${1} ${USER}@${node}:${app_dir};
done

7. As the value node_list, instead of NODES_LIST, the list of hostname of the Blitz cluster nodes (ex‐

cept for the Blitz Console node) should be entered. The values should be enteredwith a space. For example:

node_list="app1.local app2.local"

8. Make the file /usr/share/identityblitz/scripts/config_sync.sh executable:

chmod +x /usr/share/identityblitz/scripts/config_sync.sh

9. Run incrontab by executing the following command as root:

systemctl enable incrond
systemctl start incrond

2.1. Deployment 22

Blitz Identity Provider, version 5.23

Actions to take on the other Blitz Identity Provider servers

1. Install rsync:

sudo yum install rsync

2. To switch to user blitz:

sudo su - blitz

3. Run the following script:

mkdir .ssh
touch .ssh/authorized_keys
chmod 700 .ssh
chmod 640 .ssh/authorized_keys

4. Open the .ssh/authorized_keys file with any editor, such as vim, and paste the public ssh‐key pre‐

viously obtained from the Blitz Console server.

Step 7. Web Server

It is recommended to use nginx as a web server. A sample configuration file for nginx is included in Blitz Identity

Provider distribution package ‐ it is the blitz-idp.conf file from the nginx directory in the resources.
zip archive. You need to adjust the following configuration blocks, then upload the file to the server with nginx

(/etc/nginx/conf.d directory):

1. Adjust the balancing settings block:

upstream blitz-idp {
server [BLITZ-IDP-NODE-01]:9000 max_fails=3 fail_timeout=120;
server [BLITZ-IDP-NODE-02]:9000 max_fails=3 fail_timeout=120;

}
upstream blitz-reg {

server [BLITZ-REG-NODE-01]:9002 max_fails=3 fail_timeout=120;
server [BLITZ-REG-NODE-02]:9002 max_fails=3 fail_timeout=120;

}
upstream blitz-rec {

server [BLITZ-REC-NODE-01]:9003 max_fails=3 fail_timeout=120;
server [BLITZ-REC-NODE-02]:9003 max_fails=3 fail_timeout=120;

}
upstream blitz-console {

server [BLITZ-CONSOLE-NODE-01]:9001 max_fails=3 fail_timeout=120;
}

The parameters have the following designations:

• [BLITZ-%%%-NODE-XX] ‐ names (hostname) of servers with Blitz Identity Provider services

(blitz-idp, blitz-registration, blitz-recovery);

• [BLITZ-CONSOLE-NODE-01] is the name (hostname) of the server with Blitz Console.

2. Correct the block of TLS termination settings:

ssl_certificate [BLITZ-SSL-CERT-FILE];
ssl_certificate_key [BLITZ-SSL-PRIVATEKEY-FILE];

The parameters have the following designations:

• [BLITZ-SSL-CERT-FILE] ‐ path (full name) to the file with TLS server certificate;

2.1. Deployment 23

Blitz Identity Provider, version 5.23

• [BLITZ-IDP-CONSOLE-NODE-01] ‐ path (full name) to the file with TLS‐server key.

3. Note that Blitz Identity Provider ignores the X-Forwarded-Proto https header if the nginx
X-Forwarded-For contains more than one IP address, for example:

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

In this case, it is recommended to use the following directive value:

proxy_set_header X-Forwarded-For $client_ip

In this case, client_ip is calculated using map. The first value from the list will be taken:

map $http_x_forwarded_for $client_ip {
default $remote_addr;
"~(?<IP>([0-9]{1,3}\.){3}[0-9]{1,3})*" $IP;
"~(?<IP>([0-9]{1,3}\.){3}[0-9]{1,3}),.*" $IP;

}

4. Copy the static_errors folder with the server error page files to the /usr/share/nginx/html`
folder on the nginx server. The files with examples of error pages can
be found in the |project| distribution kit - it is the ``static_errors
folder in the resources.zip archive.

Step 8. LDAP directory

Optional

See also:

List of supported directories (page 9).

If you need to deploy a new LDAPdirectory, it is recommended that you use 389Directory Server, which is included

with the OS, as your LDAP directory:

CentOS and RHEL

1. Execute the installation commands:

yum install 389-ds-base 389-adminutil 389-admin 389-admin-console 389-console␣
→˓389-ds-console
yum install xauth

2. Set limits according to the 389 Directory Server recommendations:

echo "fs.file-max = 64000" >> /etc/sysctl.conf
echo "* soft nofile 8192" >> /etc/security/limits.conf
echo "* hard nofile 8192" >> /etc/security/limits.conf
echo "ulimit -n 8192" >> /etc/profile

3. Initialize the LDAP directory. Answer the installer’s questions:

setup-ds-admin.pl

4. After installation is complete, add the LDAP directory to the autorun and start the service:

systemctl enable dirsrv.target
systemctl start dirsrv.target

2.1. Deployment 24

Blitz Identity Provider, version 5.23

After installing 389 Directory Server, configure it to prepare it for use in conjunction with Blitz Identity Provider.

To do this:

1. Copy to the LDAP server the LDAP configuration scripts from Blitz Identity Provider distribution kit (this is

the ldap folder in the resources.zip archive).

2. Execute the initial configuration script ldap_init.sh ‐ the script will create the sub branch for storing

users, service user reader, configure user access rights and password policy (perpetual password for

service user), create the blitz-schema class with attributes uid, mail, mobile, n, name:

chmod +x ldap_init.sh
./ldap_init.sh

3. Run the TLS configuration script on the LDAP server (the script creates a copy of the current NSS DB, then
creates a new NSS DB, certificates, and a pin.txt file to start the server without entering a password):

chmod +x ldap_ssl.sh
./ldap_ssl.sh

4. After running the script restart the LDAP directory:

systemctl restart dirsrv.target

5. If you need to configure and enable global password policies in LDAP, adjust and execute the

ldap_pwdpolicy.sh script:

chmod +x ldap_pwdpolicy.sh
./ldap_pwdpolicy.sh

6. If you want to create additional attributes:

1. prepare a text file in which, on each line, write the name of the attribute to be created (i.e. a text file

with a column of attributes to be created);

2. run the script to create additional attributes, answer its prompts:

chmod +x ldap_add_attr.sh
./ldap_add_attr.sh

3. edit the text file at/etc/dirsrv/slapd-<instance name>/schema/99user.ldif, add
new attributes to objectclass named blitz-schema in the MAY section;

4. restart the LDAP directory to apply the changes to the directory schema:

systemctl restart dirsrv.target

2.1.4 Express instructions for various operating systems

This section provides express instructions for installing Blitz Identity Provider on various operating systems.

2.1. Deployment 25

Blitz Identity Provider, version 5.23

Limitations when using instructions

Warning: The express installation instructions cover a minimal configuration without fault tolerance, plac‐

ing all components on 1 virtual machine.

Important: The operating system must be updated with current patches before work can be performed.

The instructions are given for the case when the virtual machine is connected to the Internet. The instructions

use the name testinstallation.local as the domain name for installation (it should be corrected). In

the scripts used for configuration, the string CHANGE_ME is used as the password (it must be corrected). All

actions are performed with the privileges of the root user.

Blitz Identity Provider distribution kit files must be downloaded and extracted to the ~/tmp/blitz directory

before installation on the server (check the correct version in BLITZ_REL):

export BLITZ_REL=5.18.0
mkdir -p ~/tmp/blitz
wget -q 'https://nc.idblitz.ru/nextcloud/index.php/s/3W48EBrNXf3R3WC/download?path=
→˓%2F'$BLITZ_REL'&files=blitz-'$BLITZ_REL.bin -O ~/tmp/blitz/blitz-$BLITZ_REL.bin
wget -q 'https://nc.idblitz.ru/nextcloud/index.php/s/3W48EBrNXf3R3WC/download?path=
→˓%2F'$BLITZ_REL'&files=resources.zip' -O ~/tmp/blitz/resources.zip
unzip ~/tmp/blitz/resources.zip -d ~/tmp/blitz
find ~/tmp/blitz -name *.sh -o -name *.bin|xargs chmod +x

Rocky Linux, AlmaLinux, Oracle Linux, RHEL

Important: See limitations of (page 26) when using express instructions.

The list of operating systems for which the instructions for installation and their designation in this section are

given:

• Rocky 8: Rocky Linux 8;

• Alma 8: AlmaLinux 8;

• Oracle 8: Oracle Linux 8;

• RHEL 8: RHEL 8;

• Rocky 9: Rocky Linux 9;

• Alma 9: AlmaLinux 9;

• Oracle 9: Oracle Linux 9;

• RHEL 9: RHEL 9.

2.1. Deployment 26

Blitz Identity Provider, version 5.23

Step 1. JDK

Rocky, Alma, Oracle, RHEL 8

Install the distribution kit:

dnf install java-11-openjdk-devel

Rocky, Alma, Oracle, RHEL 9

Install the distribution kit:

dnf install java-11-openjdk-devel

Step 2. Memcached

Rocky, Alma, Oracle, RHEL 8

Install the distribution kit:

dnf install memcached

Start the service:

systemctl enable memcached && systemctl start memcached

Rocky, Alma, Oracle, RHEL 9

Install the distribution kit:

dnf install memcached

Start the service:

systemctl enable memcached && systemctl start memcached

Step 3. PostgreSQL

Rocky, Alma, Oracle, RHEL 8

Install the distribution kit:

dnf install postgresql

Initialize the DBMS with the command:

postgresql-setup initdb

Add permission in /var/lib/pgsql/data/pg_hba.conf for the blitz user to connect to the database:

2.1. Deployment 27

Blitz Identity Provider, version 5.23

host blitzdb blitz 127.0.0.1/32 scram-sha-256

Specify the password encryption algorithm in /var/lib/pgsql/data/postgresql.conf:

password_encryption = scram-sha-256

Start the service:

systemctl enable postgresql && systemctl start postgresql

Connect to the DBMS and perform initial configuration

su - postgres
psql

create database blitzdb;
create user blitz with encrypted password 'CHANGE_ME';
grant ALL PRIVILEGES ON DATABASE blitzdb to blitz;
grant ALL on ALL tables in schema public to blitz;

Return to theroot user shell and execute the scripts for creating and updating theblitzdb database structure:

psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/000-service-tasks.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/001-init-database.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/002-new_pp_columns.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/003-usd_id_table.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/004-usr_auth_table.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/005-usr_agt_table.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/006-usr_htp_hmc_alg.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/007-usr_atr_cfm.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/008-wak.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/009-fix_pp_column.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/010-add_usr_prp.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/011-pp_audit.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/012-geo_to_audit.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/013-tasks.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/014-sec_ch_ua.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/015-5.12.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/016-5.13.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/017-5.15.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/018-5.17.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/019-5.18.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/020-5.20.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/021-5.21.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/022-5.23.0.sql

2.1. Deployment 28

Blitz Identity Provider, version 5.23

Rocky, Alma, Oracle, RHEL 9

Install the distribution kit:

dnf install postgresql-server

Initialize the DBMS with the command:

postgresql-setup –initdb –unit postgresql

Add permission in /var/lib/pgsql/data/pg_hba.conf for the blitz user to connect to the database:

host blitzdb blitz 127.0.0.1/32 scram-sha-256

Specify the password encryption algorithm in /var/lib/pgsql/data/postgresql.conf:

password_encryption = scram-sha-256

Start the service:

systemctl enable postgresql && systemctl start postgresql

Return to theroot user shell and execute the scripts for creating and updating theblitzdb database structure:

su - postgres
psql

create database blitzdb;
create user blitz with encrypted password 'CHANGE_ME';
grant ALL PRIVILEGES ON DATABASE blitzdb to blitz;
grant ALL on ALL tables in schema public to blitz;

Execute the scripts for creating and updating the blitzdb database structure:

psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/000-service-tasks.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/001-init-database.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/002-new_pp_columns.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/003-usd_id_table.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/004-usr_auth_table.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/005-usr_agt_table.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/006-usr_htp_hmc_alg.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/007-usr_atr_cfm.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/008-wak.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/009-fix_pp_column.
→˓sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/010-add_usr_prp.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/011-pp_audit.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/012-geo_to_audit.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/013-tasks.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/014-sec_ch_ua.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/015-5.12.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/016-5.13.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/017-5.15.0.sql

(continues on next page)

2.1. Deployment 29

Blitz Identity Provider, version 5.23

(continued from previous page)

psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/018-5.17.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/019-5.18.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/020-5.20.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/021-5.21.0.sql
psql -U blitz -h 127.0.0.1 blitzdb -f ~/tmp/blitz/postgres/ddl/022-5.23.0.sql

Step 4. RabbitMQ

Rocky, Alma, Oracle, RHEL 8

Prepare a configuration file with repositories for RabbitMQ in /etc/yum.repos.d/rabbitmq.repo:

##
Zero dependency Erlang
##

[rabbitmq_erlang]
name=rabbitmq_erlang
baseurl=https://packagecloud.io/rabbitmq/erlang/el/8/$basearch
repo_gpgcheck=1
gpgcheck=1
enabled=1
PackageCloud's repository key and RabbitMQ package signing key
gpgkey=https://packagecloud.io/rabbitmq/erlang/gpgkey

https://github.com/rabbitmq/signingkeys/releases/download/2.0/rabbitmq-release-
→˓signing-key.asc
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300

##
RabbitMQ server
##

[rabbitmq_server]
name=rabbitmq_server
baseurl=https://packagecloud.io/rabbitmq/rabbitmqserver/el/8/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
PackageCloud's repository key and RabbitMQ package signing key
gpgkey=https://packagecloud.io/rabbitmq/rabbitmq-server/gpgkey

https://github.com/rabbitmq/signingkeys/releases/download/2.0/rabbitmq-release-
→˓signing-key.asc
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300

Install the distribution kit:

dnf install rabbitmq-server

Start the service:

systemctl enable rabbitmq-server && systemctl start rabbitmq-server

2.1. Deployment 30

Blitz Identity Provider, version 5.23

Prepare a queue for interaction:

rabbitmqctl add_user blitz CHANGE_ME
rabbitmqctl set_permissions blitz ".*" ".*" ".*"
rabbitmq-plugins enable rabbitmq_management
curl -vvk 127.0.0.1:15672/cli/rabbitmqadmin >rabbitmqadmin
chmod +x rabbitmqadmin
./rabbitmqadmin declare exchange name=blitz-tasks-exh type=direct
./rabbitmqadmin declare queue name=blitz-tasks durable=true
./rabbitmqadmin declare binding source="blitz-tasks-exh"
destination_type="queue" destination="blitz-tasks"
routing_key="blitz-tasks"

Rocky, Alma, Oracle, RHEL 9

Prepare a configuration file with repositories for RabbitMQ in /etc/yum.repos.d/rabbitmq.repo:

##
Zero dependency Erlang
##

[rabbitmq_erlang]
name=rabbitmq_erlang
baseurl=https://packagecloud.io/rabbitmq/erlang/el/9/$basearch
repo_gpgcheck=1
gpgcheck=1
enabled=1
PackageCloud's repository key and RabbitMQ package signing key
gpgkey=https://packagecloud.io/rabbitmq/erlang/gpgkey

https://github.com/rabbitmq/signingkeys/releases/download/2.0/rabbitmq-release-
→˓signing-key.asc
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300

##
RabbitMQ server
##

[rabbitmq_server]
name=rabbitmq_server
baseurl=https://packagecloud.io/rabbitmq/rabbitmqserver/el/9/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
PackageCloud's repository key and RabbitMQ package signing key
gpgkey=https://packagecloud.io/rabbitmq/rabbitmq-server/gpgkey

https://github.com/rabbitmq/signingkeys/releases/download/2.0/rabbitmq-release-
→˓signing-key.asc
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300

Install the distribution kit:

dnf install rabbitmq-server

Start the service:

2.1. Deployment 31

Blitz Identity Provider, version 5.23

systemctl enable rabbitmq-server && systemctl start rabbitmq-server

Prepare a queue for interaction:

rabbitmqctl add_user blitz CHANGE_ME
rabbitmqctl set_permissions blitz ".*" ".*" ".*"
rabbitmq-plugins enable rabbitmq_management
curl -vvk 127.0.0.1:15672/cli/rabbitmqadmin >rabbitmqadmin
chmod +x rabbitmqadmin
./rabbitmqadmin declare exchange name=blitz-tasks-exh type=direct
./rabbitmqadmin declare queue name=blitz-tasks durable=true
./rabbitmqadmin declare binding source="blitz-tasks-exh"
destination_type="queue" destination="blitz-tasks"
routing_key="blitz-tasks"

Step 5. 389 Directory Server

Rocky, Alma, Oracle, RHEL 8

Install the distribution kit:

dnf module enable 389-directory-server:stable
dnf install 389-ds-base

Enable automatic startup of the service:

systemctl enable dirsrv.target

Initialize the LDAP directory:

dscreate interactive

Perform the initial directory configuration:

/tmp/blitz/ldap/ldap_init.sh

Rocky, Alma, Oracle, RHEL 9

Install the distribution kit:

dnf install 389-ds-base

Enable automatic startup of the service:

systemctl enable dirsrv.target

Initialize the LDAP directory:

dscreate interactive

Perform the initial directory configuration:

/tmp/blitz/ldap/ldap_init.sh

2.1. Deployment 32

Blitz Identity Provider, version 5.23

Step 6. Nginx

Rocky, Alma, Oracle, RHEL 8

Install the distribution kit:

dnf install nginx

Copy the files for use:

cp /tmp/blitz/nginx/blitz-idp.conf /etc/nginx/conf.d/
cp -R /tmp/blitz/static_errors /usr/share/nginx/html

Enable automatic startup of the service:

systemctl enable nginx

Rocky, Alma, Oracle, RHEL 9

Install the distribution kit:

dnf install nginx

Copy the files for use:

cp /tmp/blitz/nginx/blitz-idp.conf /etc/nginx/conf.d/
cp -R /tmp/blitz/static_errors /usr/share/nginx/html

Enable automatic startup of the service:

systemctl enable nginx

Step 7. Blitz Identity Provider

Rocky, Alma, Oracle, RHEL 8

Install the distribution kit (specify the correct version in the file name, the correct JAVA_HOME and the set of

applications to install):

/tmp/blitz/blitz-5.X.X.bin -- -j <JAVA_HOME> -i "idp console recovery registration"

Create the blitz_param.txt configuration file with the following content and modify it according to your

settings:

DOMAIN=testinstallation.local
MEMCACHED_SERVERS="127.0.0.1"
DB_MODE=PG
PG_HOSTNAME=127.0.0.1
PG_DB_NAME=blitzdb
PG_USERNAME=blitz
PG_PASSWORD=12ABcd45

Run Blitz Identity Provider initial setup script with the right path to the blitz_param.txt file:

2.1. Deployment 33

Blitz Identity Provider, version 5.23

/usr/share/identityblitz/blitz-console/bin/configure -f blitz_param.txt

The script will prepare the configuration files, generate and display the Blitz Identity Provider administrator login

and password, and generate a password for the key container:

**
Your instance is configured on domain: test.loc
The Administration Console available on addresses:
http://testinstallation.local:9001/blitz/console

Administration user credentials of Console:
username - admin
password - 98aAB0D3f2

Your can change user credentials at file - /usr/share/identityblitz/blitz-config/
→˓credentials

Create keystore /usr/share/identityblitz/blitz-config/blitz-keystore.bks and␣
→˓generate:
- JWS(RSA256) keypair - jws_rs256_rsa_default
- AES(AES128) security key - jdbc

Generated password for keystore: BeEBcd2239
**

In case of using keys created during the installation phase, restart nginx:

systemctl restart nginx

Add a mapping between the loopback interface address and the domain name specified at installation in /etc/
hosts:

127.0.0.1 localhost.localdomain localhost testinstallation.local

Start the services:

systemctl enable blitz-idp && systemctl start blitz-idp
systemctl enable blitz-console && systemctl start blitz-console
systemctl enable blitz-registration && systemctl start blitz-registration
systemctl enable blitz-recovery && systemctl start blitz-recovery

After successfully completing the installation and configuration of Blitz Identity Provider, it is possible to connect

to the admin console using the domain name specified during the installation phase of the distribution kit, for

example, https://testinstallation.local/blitz/console.

Rocky, Alma, Oracle, RHEL 9

Install the distribution kit (specify the correct version in the file name, the correct JAVA_HOME and the set of

applications to install):

/tmp/blitz/blitz-5.X.X.bin -- -j <JAVA_HOME> -i "idp console recovery registration"

Create the blitz_param.txt configuration file with the following content and modify it according to your

settings:

DOMAIN=testinstallation.local
MEMCACHED_SERVERS="127.0.0.1"
DB_MODE=PG

(continues on next page)

2.1. Deployment 34

Blitz Identity Provider, version 5.23

(continued from previous page)

PG_HOSTNAME=127.0.0.1
PG_DB_NAME=blitzdb
PG_USERNAME=blitz
PG_PASSWORD=12ABcd45

Run Blitz Identity Provider initial setup script with the right path to the blitz_param.txt file:

/usr/share/identityblitz/blitz-console/bin/configure -f blitz_param.txt

The script will prepare the configuration files, generate and display the Blitz Identity Provider administrator login

and password, and generate a password for the key container:

**
Your instance is configured on domain: test.loc
The Administration Console available on addresses:
http://testinstallation.local:9001/blitz/console

Administration user credentials of Console:
username - admin
password - 98aAB0D3f2

Your can change user credentials at file - /usr/share/identityblitz/blitz-config/
→˓credentials

Create keystore /usr/share/identityblitz/blitz-config/blitz-keystore.bks and␣
→˓generate:
- JWS(RSA256) keypair - jws_rs256_rsa_default
- AES(AES128) security key - jdbc

Generated password for keystore: BeEBcd2239
**

In case of using keys created during the installation phase, restart nginx:

systemctl restart nginx

Add a mapping between the loopback interface address and the domain name specified at installation in /etc/
hosts:

127.0.0.1 localhost.localdomain localhost testinstallation.local

Start the services:

systemctl enable blitz-idp && systemctl start blitz-idp
systemctl enable blitz-console && systemctl start blitz-console
systemctl enable blitz-registration && systemctl start blitz-registration
systemctl enable blitz-recovery && systemctl start blitz-recovery

After successfully completing the installation and configuration of Blitz Identity Provider, it is possible to connect

to the admin console using the domain name specified during the installation phase of the distribution kit, for

example, https://testinstallation.local/blitz/console.

2.1. Deployment 35

Blitz Identity Provider, version 5.23

2.1.5 The first steps after installation

The section contains information that you may need after the Blitz Identity Provider installation.

Configure launch options for Blitz Identity Provider services

The following Java options are available for Blitz Identity Provider applications to define enabling special modes

of application operation and override the default modes of operation:

Attention: It is recommended that you consult with Blitz Identity Provider technical support before installing

options.

• blitz.login.cookie.sameSite ‐ specifies the flag with which session cookies should be created

in Blitz Identity Provider. By default, cookies are created with the flag sameSite=Lax. This can be over‐
ridden to None.

• blitz.login.outside.flow.callback.ttl.sec ‐ specifies the time to wait for a response

from an external authentication method called from Blitz Identity Provider. The default value is 300 sec‐

onds.

• blitz.login.mus.cookie.unused.ttl.sec ‐ sets the lifetime of the cookie responsible for

memorizing the list of logged in users in the current browser. The default value corresponds to 365 days

(the value is set in seconds);

• blitz.login.bua.cookie.ttl.sec ‐ sets the validity time of the cookie used to remember the

user’s browser. The default value corresponds to 365 days (the value is set in seconds);

• blitz.login.setLastAuth.disabled ‐ allows to disable writing the time of the last user authen‐

tication to the database. By default, the time of the last user authentication is written to the database.

Disabling recording of the last authentication time allows to increase database performance, but does not

allow to use the function of blocking accounts by inactivity (page 264);

• blitzDispatchedQueues ‐ specifies the name of the queue from which Blitz Identity Provider pro‐

cesses tasks for sending emails, user registration and password recovery. The default queue name is de-
fault;

• blitz.stores.united.u-cache.ttlInSec ‐ the expiration time of the account data cache pro‐

vided via the REST API. The default is 1 second;

• blitz.csrf.cookie.ttlInSec ‐ specifies the validity time of the cookie preventing CSRF. The de‐

fault corresponds to 6 hours (the value is set in seconds). This is the maximum time from the moment the

user opens the page until the completed page is executed by the user to the server;

• blitz.jdbc.cols.types.strings ‐ specifies the column type used to store string attributes in the

relational DBMS (PostgreSQL). The text type is used by default;

• blitz.jdbc.pool.stat-period ‐ specifies the frequency at which JDBC usage statistics are logged.
The default is 300 seconds;

• saml.numThreads ‐ specifies the number of threads that Blitz Identity Provider processes SAML input

requests. The default is 32 threads;

• blitz.oauth.exchange.rules.fs.cache.capacity ‐ specifies the cache size used by Blitz

Identity Provider to check microservice access rules. The default cache size is 10000 checks;

• blitz.oauth.dyn.reg.clientSecretLength ‐ specifies the size of client_secret gen‐

erated when dynamically registering a pair of client_id and client_secret. By default,

client_secret is generated with a size of 15 characters.

• blitz.oauth.dyn.reg.clientAttachingTllInSec ‐ specifies the time during which the

client_id andclient_secret pair generated during dynamic registration should be associatedwith

the user (if the pair is not associated with the user during this time, it will be canceled). The default corre‐

sponds to 1 hour (the value is specified in seconds).

2.1. Deployment 36

Blitz Identity Provider, version 5.23

• blitz.session.checkRemoteAddress.disabled ‐ set true to disable checking the equality

of the session and the incoming request IP addresses (recommended if you have users with dynamic IP

addresses).

• blitz.webauthn.residentKey.preferred ‐ if the option is specified, security keys are regis‐

tered with the parameter residentKey=preferred. In this case, if the option is set as true, then
requireResidentKey=true, and if the option is false, then requireResidentKey=false.

• blitz.ldap.store.extension.class ‐ passingcom.identityblitz.idp.store.ldap.
custom.PasswordMigrationExt to the option enables the password migration mode.

• blitz.ldap.store.extension.PasswordMigrationExt.passwordHashAttr ‐ specifies

the name of the LDAP attribute that stores the password hash for the passwordmigration option. The hash

must contain the {bcrypt} prefix for password migration from hashes with bcrypt algorithm.

• extensionsDir is the address of the directory with extension modules (page 247).

• metrics – allows you to disable gathering performance metrics in the Prometheus format. To do so,

set the value to false. By default, metric gathering is enabled

• couchbase.durability.mode ‐ specifies the mode of data saving in Couchbase Server. In case of

using Couchbase Server version 6.0.1 or older, clientVerified mode must be used. If you are using

Couchbase Server versions 6.5, 7.0 or newer, clientVerifiedmode cannot be used. The parameter in

Couchbase Server versions 6.5, 7.0 becomes optional (in the absence of the parameter, majoritymode

is used) and allows you to select the required data retention assurance mode in a cluster with replication

from the following options19:

– disabled ‐ waiting for memory‐only writes on the primary node of the cluster;

– majority ‐ waiting for memory writes on the primary node and most replicas;

– majorityAndPersistActive ‐ waiting to write to disk on the primary node and write to mem‐

ory for most replicas;

– persistToMajority ‐ waiting to write to disk on the primary node and in most replicas.

• akka.http.parsing.max-uri-length ‐ sets the maximum length of URL in the browser string.

In some cases it may be necessary to increase the string size, then it is recommended to set 16k in this

parameter.

• akka.http.parsing.max-header-value-length ‐ sets the maximum allowed HTTP header

size. If it’s necessary to increase the header size, set 16k in this parameter.

• akka.coordinated-shutdown.phases.service-stop.timeout ‐ sets thewaiting time after

receiving the command to stop the service, duringwhich the service can complete the tasks taken intowork.

If you use the message broker built into Blitz Identity Provider, it is recommended to set the parameter to

30s for the service.

• memcached.locator.tries ‐ defines the number of attempts to find a working Memcached server

if the system is processing an access failure to Memcached server.

Warning: It is not guaranteed that the options used will be preserved in future versions of Blitz Identity

Provider.

To set options with values different from the default values, it is necessary to edit the /etc/default/
blitz-idp file. Set the necessary JAVA_OPTS in it. Below is an example of a file in which the blitz.
csrf.cookie.ttlInSec and blitz.login.cookie.sameSite options are also set among the Java

options. After changing JAVA_OPTS, you must restart the Blitz Identity Provider services on which the changes

are made.

19 https://docs.couchbase.com/server/current/learn/data/durability.html

2.1. Deployment 37

https://docs.couchbase.com/server/current/learn/data/durability.html

Blitz Identity Provider, version 5.23

export JAVA_HOME=/usr/java/default
export PIDFILE=/usr/share/identityblitz/blitz-idp/RUNNING_PID
export JAVA_OPTS="-server -Xms512m -Xmx1G -XX:MaxMetaspaceSize=512m -Xmn256m -Dcom.
→˓couchbase.connectTimeout=30000 -Dakka.http.parsing.max-uri-length=16k"
export JAVA_OPTS="$JAVA_OPTS -Dblitz.csrf.cookie.ttlInSec=36000 -Dblitz.login.
→˓cookie.sameSite=None -Dplay.filters.headers.frameOptions=null"

Logging in to Admin console

After installing Blitz Identity Provider, the basic system configuration is performed in the Admin Console, which

can be accessed from the link indicated in the product installation results. For the first login to the Admin console,

you must use the login and password generated at the time of installation of the Admin Console.

Usually the link is of the form:

https://<blitz_domain>/blitz/console

or

http://<blitz_console_host>:9001/blitz/console

The standard view of the Admin console login screen is shown in the figure:

After successful login, the main page of the Admin Console opens, as shown below. You can navigate between

the various Blitz Identity Provider settings using the menu on the left side of the screen.

2.1. Deployment 38

Blitz Identity Provider, version 5.23

License key installation

If you click on the You are using …, version … link in the footer of any Blitz Identity Provider admin console page,

the screen below will be displayed.

On this screen, you can view the version number of your current Blitz Identity Provider, go to the software docu‐

mentation site, and the feedback form.

In the License information block you can see the license expiration date and themaximumnumber of applications

allowed by the license. If you click the Change license button, you can enter a new license key.

After you have installed the new license key it is recommended that you restart Blitz Identity Provider applications.

2.1. Deployment 39

Blitz Identity Provider, version 5.23

You can also set the license key by editing the blitz.conf configuration file in the /usr/share/
identityblitz/blitz-config directory. You need to find the blitz.prod.local.idp.license
configuration block and adjust it as follows (set the license key in the key parameter):

"license" : {
"key" : "MEQC…U"

}

Administrator account management

After installing Blitz Identity Provider, it is recommended that you create additional administrator accounts, as‐

sign passwords and administrative roles to them. You can manage administrator accounts in the Administrators

section.

The following actions are available under Administrators section:

• creation and deletion of administrator accounts;

• change of the administrator account passwords;

• assignment and revoke of administrator functions.

By default, the roles listed in the table are available in Blitz Identity Provider. You can reconfigure existing roles or

create new roles through the settings in the credentials configuration file.

Standard administrator roles in Blitz Identity Provider

Role Available sections of the Admin console

superuser (root) Everything is accessible

IS administrator

(security)
Administrators, Events

system administrator

(sysadmin)
Data sources, Authentication, Authentication flows, Identity providers, SAML,

OAuth 2.0, Devices, Messages

application administrator

(app_admin)
Applications

Interface administrator

(ui_admin)
Self‐services, Login page themes

TA administrator (support) Users, Groups, Access rights, Events

In addition to the standard identification and authenticationof administrators by login andpasswordwhen logging

into the admin console, it is possible to configure the use of identification and authentication of users to the admin

console using the Blitz Identity Provider authentication server. The settings are made through the console.
conf configuration file.

2.1. Deployment 40

Blitz Identity Provider, version 5.23

Restarting Blitz Identity Provider services

To restart the Blitz Identity Provider services, use the following command:

systemctl restart APP_NAME

Instead of APP_NAME, you must specify the name of the application to be restarted: blitz-console,
blitz-idp, blitz-registration, blitz-recovery, blitz-keeper.

Example of a command to restart an authentication service application:

systemctl restart blitz-idp

Deleting files used for installation

When you launch it for the first time, Blitz Identity Provider encrypts the administrator passwords and DBMS

connection passwords created during installation. At the same time, the initial configuration file is copied to the

/usr/share/identityblitz/blitz-config/.snapshot directory. It is recommended to delete the

blitz_param.txt files used during the installation process and the blitz.conf copies. To do so, run the

command:

rm blitz_param.txt /usr/share/identityblitz/blitz-config/.snapshot/blitz.conf.*

2.2 Basic configuration

2.2.1 User account attributes

A user account in Blitz Identity Provider is described by a set of attributes. This section is dedicated to all aspects

of their management.

What is an account attribute?

A user account is defined by a set of attributes.

The attribute values are set in the following ways:

• are read from connected attribute stores (page 47);

• are read from the Blitz Identity Provider database;

Note: The attribute is read and saved in the database if no attribute mapping is configured for the

attribute in the connected attribute store.

• computed from other attributes or filled with constant values.

Tip: You can compute the attribute user domain from an email address email, or create a composite

attribute full name from the individual attributes with the surname, first name andmiddle name of the

user.

The configuration of attributes consists of:

• configuring stored attributes, i.e., those maintained in connected repositories or in the Blitz Identity

Provider database;

2.2. Basic configuration 41

Blitz Identity Provider, version 5.23

• configuring computable attributes, i.e., those thatmust take a constant value or that are computed by rules.

• configuring input value conversion rules that allow you to convert attribute values when they are changed

(e.g., when they are edited by the user or during invoking of the corresponding API);

• configuring output value conversion rules that allow to perform additional transformations with the com‐

puted attributes;

• configuring attribute assignment ‐ definition of the identifier in the system and attributes, responsible for

mobile phone number, e‐mail address.

Attention: For Blitz Identity Provider to work correctly, as a minimum, the following configurations must be

performed:

• necessary attributes are configured;

• one of the attributes is defined as an identifier.

Configuring the available attributes

Stored attributes

You must go to the Data Sources block in the Stored attributes section and take the following steps:

• add a new attribute by clicking the +Add attribute link;

• specify the attribute name to be used in Blitz Identity Provider; The name of the attribute may be different

from its name in the external repository ‐ in latter case, you must specify the conversion rule in the settings

(page 47) of this repository;

• specify the value type ‐ data type format (String, Number, Boolean, Bytes, Array of Strings);

• set the attribute’s parameters:

– whether it is possible to search for it (the Srch column);

Tip: If it is an attribute from a connected repository, it is recommended to create a search index for

it.

– whether the attribute is mandatory (the Mand column);

– whether the attribute’s value should be unique in the system (column Uniq).

After adding an attribute, it is not allowed to change its name. If it is required to rename an attribute, delete, and

create a new one.

Important: In the Users section of the user card (page 139), the attributes will be shown in the order in which

they were created. It is not possible to change the order of attributes via the admin console. If you need to

change the order of attributes, you must manually reorder them in the blitz.conf configuration file in the

blitz.prod.local.idp.id-attrs settings section. In order to display their text names in the Users
section instead of system attribute names, taking into account the user interface language, it is necessary to

define (page 234) for the created attributes in messages lines with the description of attribute names for the

used languages. The strings must have the form custom.user.attr.name.<attribute name>.

When you create a new attribute, a mapping of the new attribute is also automatically created in all connected

attribute storages to an attribute with the same name. After creating new attributes, you have to check and edit

themapping configurations in the connected storages.If the attribute is not expected to be read from the storage,

you have to delete the mapping line ‐ in this case, the attribute will be stored in Blitz Identity Provider database.

2.2. Basic configuration 42

Blitz Identity Provider, version 5.23

Important: If PostgreSQL is used as the DBMS, create a column in the USR_ATR table as well as in the USR
table (if internal storage (page 46) is used). The column namemust correspond to the name of the attribute to be

added, but be normalized from lowerCamelCase into UPPERCASE_SEPARATED_BY_UNDERSCORE, e.g.,
middleName ‐> MIDDLE_NAME. The column type must be chosen based on the type of the attribute value:

• column with text type for attributes with String and Bytes type (in this case the value will be stored

in Base64);

• column with text[] type for attribute with Array of strings type;

• a columnwith a suitable numeric type (bigint,integer,smallint) for attributeswithNumber type;

• a column with bool type for an attribute with Boolean type.

It is possible to assign an LDAP directory attribute to a translator that converts the attribute from the format

stored in LDAP to the required format in Blitz Identity Provider. For example, this can be useful if you need to

process the objectGUID attribute from an Active Directory LDAP directory in Blitz Identity Provider so that the

attribute is represented as a GUID string instead of a byte. This is configured (page 248) via a configuration file.

Computed attributes

To configure computed attributes in the Computed attributes block you should do the following actions:

• add a new attribute by clicking the +Add attribute link;

• specify the name of the computed attribute;

• specify the value type ‐ data type format;

• specify the calculation rule of the attribute based on other attributes or assigning a constant value to it.

Example of rules:

2.2. Basic configuration 43

Blitz Identity Provider, version 5.23

• to create the First name and last name attribute from the stored attributes family_name
and given_name, it is necessary to define the stored attributes family_name and given_name,
and then set the computed attribute full_name with the computation rule ‐ ${family_name}
${given_name}.

• to create the attribute e-mail domain from the stored attribute email you need to define the stored

attribute email, and then define the computed attribute domain and define its computation rule

${email##*@}.

Note: You can find help on supported substitution string parameters here20.

Input value conversion rules

Input value conversion rules allow checking the correctness of the data input format and ensure that the data is

saved in the correct format. Rules are specified using regular expressions. Each rule includes a regular expression

that allows decomposition (splitting into parts) of the input value and a rule for saving the obtained parts (layout).

Example of solved tasks:

• to check if theemail attribute contains the@ character, youmust specify a^(.+)@(.+)$decomposition

expression and a ${0-} layout expression;

• to check the format of the mobile and save it in the format +7(999)1234567, you

must specify the decomposition expression ^(\+?)([78]?) ?\(?([0-9]{3})\)? ?
([0-9]{3})[-]?([0-9]{2})[-]?([0-9]{2})$ and the composition expression

+7(${3-})${4-}${5-}${6-}.

20 http://tldp.org/LDP/abs/html/parameter‐substitution.html

2.2. Basic configuration 44

http://tldp.org/LDP/abs/html/parameter-substitution.html

Blitz Identity Provider, version 5.23

Output value conversion rules

These rules allow additional transformations to be performed on computed attributes. For example, only nec‐

essary groups can be extracted from an attribute with an array of user groups, or group values from the format

CN=name,DC=... should be converted simply to CN names. Examples of settings for such conversion rules are

shown in the figure below (the corresponding computed attributes must be created (page 43) beforehand).

Setting up attribute purpose

It is necessary to specify which attribute will be the identifier in the system. The identifier must be unique and

not change over time.

Note: It is not recommended to change the base ID in the future, as all user settings are bound to it. Changing

the base ID will lose two‐factor authentication settings, registered security events, memorized user device

lists, connections to external accounts, and user attributes stored in Blitz Identity Provider database.

You can also specify which attributes are used for special purposes:

1. An attribute used as a marker of account lockout. This attribute must have a value type of Boolean. Blitz
Identity Provider supports locking out users stored in the LDAP directory. To use this feature, you must also

configure (page 47) the appropriate attribute in the LDAP directory settings.

2. For example, the expression ${family_name} ${given_name} ${middle_name-} allows an

account (for example, under Users) to display the last name, first name, and patronymic name (if it’s

present).

3. Attributes used to store email addresses.

4. Attributes used to store mobile phone numbers.

Multiple attributes can be specified as e‐mail and mobile phone attributes (e.g., for personal and work email

address).

2.2. Basic configuration 45

Blitz Identity Provider, version 5.23

Connecting attribute storages

Types of storage

As user attribute storages Blitz Identity Provider allows you to use:

1. External (connected) storage. This can be:

• LDAP repository ‐ this can be any server that supports the LDAP (389 Directory Server, OpenLDAP,

FreeIPA, etc.), as well as Microsoft Active Directory or Samba4;

• other storage that requires special REST services (page 51) to be developed to connect to Blitz Identity

Provider.

2. Internal Storage. All user attributes are stored in the Blitz Identity Provider database. If Couchbase Server

is used as a DBMS, Blitz Identity Provider database can be used to store a small number of accounts. If

PostgreSQL is used as a DBMS, any number of accounts can be stored.

Blitz Identity Provider requires configuring at least one storage and configuring attributes (page 42) to work cor‐

rectly. By default, an internal configured storage and a number of attributes added.

Note: Each user account is stored in one specific storage. Blitz Identity Provider allows you to configure and

connect multiple storages, but it is recommended that you use one primary storage for operation. Use of a

second storage should be decided based on the applicable datamodel. For example, the connected corporate

Active Directory can store data of the organization’s employees, and an additional LDAP storage can store data

of specially registered “external” users (employees of partner organizations, freelancers, etc.).

To select and configure the storage to be used, you must first configure the attributes in the Data sources in

Attribute storages section. The internal storage is configured by default. To add an external storage, click the Add

new storage button, then specify the type of the external storage and configure the parameters of interaction

with it. The created storages are disabled after creation ‐ you should enable them using the toggle switch in the

Attribute storages section.

2.2. Basic configuration 46

Blitz Identity Provider, version 5.23

If you do not use an internal storage, you can delete it. To do this, go to the properties of the corresponding

external storage and click the Delete button.

Using multiple storages can solve the problem of users’ logging records stored in different LDAP directories or in

different branches of the same directory. For example, as a result of a merger between two companies, you can

connect two directories to Blitz Identity Provider and provide user logins without configuring trust or building a

meta‐directory.

Connecting storage via LDAP

If you are using an LDAP storage deployed in your organization as the source of user accounts, you must use the

Data sources section of the admin console and perform the following steps to configure it:

• add a new storage, specify the following data:

– type of storage to be added ‐ select LDAP;

– storage address;

– port;

– check the Use SSL box if a secure connection should be used.

• configure the LDAP‐storage by configuring the following parameters:

– storage description (optional);

– whether the storage is to be used only for reading data or whether it is possible to write to it;

– whether SSL connection should be used;

2.2. Basic configuration 47

Blitz Identity Provider, version 5.23

– whether DNS‐calls balancing to the LDAP‐storage is needed ‐ to do this press the DNS‐balances but‐

ton and set the parameters Domain name, Port, Use SSL, Mode of operation, Cache
storage time, ms;

Note: During DNS balancing, Blitz Identity Provider queries the DNS server for all connection ad‐

dresses by the specified LDAP directory domain name. If more than one address is registered in

DNS, then depending on the selected mode of operation Blitz Identity Provider establishes con‐

nection to the first available server (FAILOVER mode of operation), to a random server (RANDOM

mode of operation) or to each server in turn (ROUND_ROBIN mode of operation). The list of

servers received from DNS is stored in Blitz Identity Provider cache for the time specified in the

Cache storage time, ms setting.

– connection pool settings;

• specify the login and password of the user on behalf of whom theworkwith LDAP storagewill be performed

(this user must have the rights to read andwrite data), as well as the base DN ‐ the partition of the directory

with user accounts;

Note: It is acceptable to specify a user with read‐only privileges if the storage is used only for reading.

• specify search settings ‐ search depth and maximum number of returned accounts (this affects the number

of users displayed in the Users section of the admin console).

2.2. Basic configuration 48

Blitz Identity Provider, version 5.23

You can further customize attribute matching rules and specify partitioning rules and attribute value conversion

rules. This allows you to:

• give a system attribute a different name than its name in the LDAP directory. For example, if an attribute is

specified as sn in the LDAP directory, but you want to use it as family_name in Blitz Identity Provider,

select the attribute family_name and specify n as its name in LDAP. An example of this configuration is

shown in the figure below;

• use special rules for writing attributes to a given LDAP directory. For example, if you want to store a cell

phone in the format +7(999)1234567 into an LDAP directory without brackets, then set a partitioning

rule ^\+7\(([0-9]{3})\)([0-9]{7})$ and a conversion rule +7${1-}${2-} for the entry.

• use special rules for reading attributes from a given LDAP directory. For example, if an attribute with a

cell phone number is specified in the +79991234567 format in the LDAP directory, and Blitz Identity

Provider uses the +7(999)1234567 format, you can use the ^\+7([0-9]{3})([0-9]{7})$ and

the +7(${1-})${2-} conversion rule to read from the directory.

2.2. Basic configuration 49

Blitz Identity Provider, version 5.23

If an attribute created earlier (page 42) is not supposed to be stored in this storage, you can delete the attribute

using the delete button. In this case, the value of the deleted attribute will be stored in Blitz Identity Provider

database instead of in the external storage to be connected when creating/editing an account.

If you plan to use the account lockout feature, you must remove the attribute defined in the Data sources section

as a lockout attribute from the attribute matching rules table.

If Blitz Identity Provider is used to register users, and the entry is written to this directory, you should specify the

parameters for creating new users ‐ the DN of the parent container within which the users will be created, and

the system attributes related to the specifics of the storage***.

Note: For example, objectclass, which defines the type of LDAP account to be created. ForMicrosoft Ac‐

tive Directory, objectclassmust have the format Array of string and the value is top,person.

2.2. Basic configuration 50

Blitz Identity Provider, version 5.23

Connecting to storage via REST

If an external database (not LDAP storage) is used as the source of user accounts, a connector must be developed

to connect to it. The connector provides reading (or changing) the necessary data from the database and provides

the data in the correct format as REST services to Blitz Identity Provider.

To configure interaction with REST services, perform the following steps:

• add a new storage, specifying the type of storage to be added ‐ REST;

• specify storage description (optional);

• specify whether the storage is used only for reading data or whether it is possible to write to it;

• specify the maximum number of records returned by the search;

• specify the list of attributes available using REST services;

• specify the URLs of the following services:

– service for user search;

– service for receiving user data;

– verification service for user login and password;

– service for changing user password;

– service for adding a new user;

– service for changing user data;

– service for deleting user.

The screenshot of the page with settings of connection to the storage using REST services is presented below.

The following subsections describe the requirements for developing REST services that provide the necessary

Blitz Identity Provider access to the accounts storage.

2.2. Basic configuration 51

Blitz Identity Provider, version 5.23

Service for user search

The user search service must process requests using the GET method, where the search query is specified as

the rql parameter. The query has the format Resource Query Language (RQL)21 and must at least support the

following operations:

• limit is the number of records to be return;

• and ‐ simultaneous execution of search conditions;

• or – alternative execution of search conditions (for example, search by different attributes as a login);

• in ‐ the occurrence of the attribute value in the list of values (for example, searching for linked accounts

when logging in through an external identity provider);

• eq ‐ equality condition check with the possibility to search by mask (for example, using a star (*)).

For example, if only search as a login is configured in the Authentication section by email attribute, then the

RQL‐parameter sent during authentication will have the following form (where test@mail.com ‐ data entered
by the user as a login):

rql=and(eq(email,test@mail.com),limit(10))

If you are logging in using an external identity provider, and you want to find the accounts associated with the

external account in the storage, the RQL parameter passed will be:

rql=and(in(sub,(7d5fd1d2-e171-4c85-8da6-00368863c396,2b78a2da-241c-4182-ba9b-
→˓d810cdb7aa70)),limit(10))

If email OR sub attribute search is configured as login, the passed RQL parameter will be of the form:

rql=and(or(eq(sub,test@mail.com),eq(email,test@mail.com)),limit(10))

The service should return the list of users and their data in JSON format in UTF‐8 encoding. Attributes must be

returned for each user:

• id ‐ a user identifier in the connected database. This identifier implies that it will be unchangeable for this

user;

• attrs ‐ object with the list of returned user data. It is necessary to return those attributes, which are

supposed to be used in the system and which are configured in the Data sources section.

Request example:

GET /users/search?rql=and(eq(sub,BIP*),limit(10)) HTTP/1.1
Host: idstore.identityblitz.com
Content-Type: application/json
Cache-Control: no-cache

Response example:

[
{
"id": "ID123",
"attrs": {

"sub": "BIP123",
"given_name": "Ivan",
"family_name": "Ivanov",
"email": "ivanov@test.org",
"phone_number": "+79991234567"

(continues on next page)

21 https://github.com/kriszyp/rql

2.2. Basic configuration 52

https://github.com/kriszyp/rql

Blitz Identity Provider, version 5.23

(continued from previous page)

}
},
{
"id": "ID456",
"attrs": {

"sub": "BIP456",
"given_name": "Elena",
"family_name": "Ivanova",
"email": "ivanova@test.org",
"phone_number": "+79997654321"

}
}

]

Service for receiving user data

In some cases Blitz Identity Provider requests data of a particular user. The service for obtaining user data should

process requests using the GETmethod, in which the id attribute ‐ the internal user identifier in the connected

database ‐ is specified in the URL. When specifying the URL of this service in the admin console, you must use a

substitution string for the user identifier ‐ ${id}, for example:

https://idstore.identityblitz.com/users/${id}

If the user is found, the service should respond 200 OK and return user data in JSON format in UTF‐8 en‐

coding. If the user is not found: 400 Bad Request, error code USER_NOT_FOUND in text/plain;
charset=utf-8 format.

Request example:

GET /users/ID123 HTTP/1.1
Host: idstore.identityblitz.com
Content-Type: application/json
Cache-Control: no-cache

An example of a response if the user is found:

HTTP/1.1 200 OK
Date: Mon, 18 Jul 2016 12:28:59 GMT
Content-Type: application/json; charset=utf-8

{
"id": "ID123",
"attrs": {
"sub": "BIP123",
"given_name": "Ivan",
"family_name": "Ivanov",
"email": "ivanov@test.org",
"phone_number": "+79991234567"

}
}

Answer for the case when the user is not found:

HTTP/1.1 400 Bad Request
Date: Mon, 18 Jul 2016 12:28:59 GMT
Content-Type: text/plain; charset=utf-8

(continues on next page)

2.2. Basic configuration 53

Blitz Identity Provider, version 5.23

(continued from previous page)

USER_NOT_FOUND

Verification service for user login and password

Verification service for user login and password must process POST requests, body should contain the following

parameters (in the application/x-www-form-urlencoded):

• id ‐ internal identifier of the user in the connected database;

• password – password.

If successful, the service should return a 200 OK response.

If the service cannot authenticate, it should return 400 Bad Request with one of the following errors:

• INVALID_CREDENTIALS ‐ incorrect user login or password;

• UNWILLING_TO_PERFORM ‐ user is locked;

• INAPPROPRIATE_AUTHENTICATION ‐ user cannot be authenticated by password;

• PASSWORD_EXPIRED ‐ user’s password is expired.

Request example:

POST /users/bind HTTP/1.1
Host: idstore.identityblitz.com
Content-Type: application/x-www-form-urlencoded
Cache-Control: no-cache

id=ivanov&password=12345678

Response example (successful login and/or password):

HTTP/1.1 200 OK
Date: Mon, 18 Jul 2016 12:38:53 GMT
Content-Type: application/json; charset=utf-8

Response example (wrong login and/or password):

HTTP/1.1 400 Bad Request
Date: Mon, 18 Jul 2016 12:38:53 GMT
Content-Type: text/plain; charset=utf-8

INVALID_CREDENTIALS

Service for changing user password

Service for changing user login and password must process POST` requests, body should contain
the following parameters (in the ``application/x-www-form-urlencoded):

• id ‐ user identifier, obtained from the result of the user’s password;

• old_password ‐ old password;

• new_password – new password.

If successful, the service should return a 200 OK response.

In case of error, the service should return 400 Bad Request with one of the following errors:

2.2. Basic configuration 54

Blitz Identity Provider, version 5.23

• INVALID_CREDENTIALS ‐ user with the given ID and password is not found;

• UNWILLING_TO_PERFORM ‐ user is locked;

• CONSTRAINT_VIOLATION ‐ new password does not correspond to the security policy.

The other errors returned should be similar to the procedure to verify the login and password.

Request example:

POST /users/changePassword HTTP/1.1
Host: idstore.identityblitz.com
Content-Type: application/x-www-form-urlencoded
Cache-Control: no-cache

id=ivanov&old_password=12345678&new_password=0987654321

Response example:

HTTP/1.1 400 Bad Request
Date: Mon, 18 Jul 2016 12:43:23 GMT
Content-Type: text/plain; charset=utf-8

CONSTRAINT_VIOLATION

Service for adding a new user

Service for adding a new user must process PUT requests, body should contain the following parameters (in the

application/json format):

• password ‐ user’s password (optional);

• attrs ‐ user’s attributes.

If successful, the service should return the user’s data in JSON format in UTF‐8 encoding.

If the password doesn’t meet the security policy, the service should return 400 Bad Request with CON-
STRAINT_VIOLATION error.

If such a user already exists, the service should return 400 Bad Request with error USER_ALREADY_EX-
ISTS and note that the user with this identifier already exists.

Request example:

PUT /users HTTP/1.1
Host: idstore.identityblitz.com
Content-Type: application/json
Cache-Control: no-cache

{
"password":"********",
"attrs": {

"sub": "ivanov@test.org",
"email": "ivanov@test.org"

}
}

Response example (user created):

HTTP/1.1 200 OK
Date: Mon, 18 Jul 2016 12:28:53 GMT
Content-Type: application/json; charset=utf-8

(continues on next page)

2.2. Basic configuration 55

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"id": "ID678",
"attrs": {

"sub": "ivanov@test.org",
"email": "ivanov@test.org"

}
}

Response example (account is already registered):

HTTP/1.1 400 Bad Request
Date: Mon, 18 Jul 2016 12:43:23 GMT
Content-Type: text/plain; charset=utf-8

USER_ALREADY_EXISTS:ivanov@test.org

Service for changing user data

The service of changing user data should process requests using the POSTmethod, the id attribute ‐ the internal
identifier of the user in the connected database ‐ should be specified in the URL of the called service. When

specifying the URL of this service in the admin console, you must use a substitution string for the user identifier

‐ ${id}, for example:

http://idstore.identityblitz.com/users/${id}

The body of the data change request contains the following parameters (in application/json format):

• password ‐ the new value of the user’s password (if the password is not sent, it must not change);

• replaced ‐ new values of the user’s attributes to be replaced or added;

• deleted ‐ list of names of attributes to be deleted.

If successful, the service should return the user’s data in JSON format in UTF‐8 encoding.

If new password doesn’t meet the security policy, the service should return 400 Bad Request with CON-
STRAINT_VIOLATION error.

If such a user does not exist, the service should return 400 Bad Request with error USER_NOT_FOUND.

Request example:

POST /users/ID123 HTTP/1.1
Host: idstore.identityblitz.com
Content-Type: application/json
Cache-Control: no-cache

{
"replaced": {

"email": "ivanov@domain.org"
},
"deleted": ["family_name"],
"password": "########"

}

Response example:

2.2. Basic configuration 56

Blitz Identity Provider, version 5.23

HTTP/1.1 200 OK
Date: Mon, 18 Jul 2016 12:38:53 GMT
Content-Type: application/json; charset=utf-8

{
"id": "ID123",
"attrs": {

"sub": "BIP123",
"given_name": "Ivan",
"email": "ivanov@domain.org"

}
}

Service for deleting user

The service of user account deletion should process requests using the DELETE method, the id attribute ‐ the

internal user identifier in the connected database ‐ should be specified in the URL of the called service. When

specifying the URL of this service it is necessary to use the substitution string for the user identifier ‐ ${id}, for
example:

http://idstore.identityblitz.com/users/${id}

If successful, the service must return the response 200 OK.

If a user does not exist, the service should return 400 Bad Request with error USER_NOT_FOUND.

Request example:

DELETE /users/ID123 HTTP/1.1
Host: idstore.identityblitz.com
Content-Type: application/json
Cache-Control: no-cache

Response example:

HTTP/1.1 200 OK
Date: Mon, 18 Jul 2016 12:28:53 GMT
Content-Type: application/json; charset=utf-8

Configuring internal storage

If you are using Blitz Identity Provider database as the source of your user accounts, you must take the following

steps:

• add a new storage ‐ specify the type of BUILT-IN storage to be added;

• specify the storage ID;

• provide a description of the storage;

• define whether the storage is read‐only or not;

• specify the maximum number of accounts returned in search.

2.2. Basic configuration 57

Blitz Identity Provider, version 5.23

Note: If PostgreSQL is used as the DBMS, any number of accounts can be stored. If Couchbase Server is used

as the DBMS, the internal storage can be used to store a small number of accounts.

2.2.2 Authentication

Authentication settings are defined in the section Authentication section of the Admin Console. The next sections

contain information on how to work with those settings.

How to work with authentication settings

Authentication settings are set in the section :bdg‐primary: Authentication of the admin console. The settings

are divided into tabs:

General settings

General settings that define user authentication

Password policies

Password policy settings

Security keys

Security key settings

First factor

Settings of authentication methods used for primary identification and authentication

Second factor

Settings of authentication methods used to confirm login

:Third factor

Optional tab, it is displayed only if it is configured to have an authentication method applied additionally after

passing the checks of the first and second factors

Authentication methods are grouped by the first and second factor. To enable the authentication method, you

must first configure it.

Note: The second factor is used to “strengthen” the first factor, e.g, the user in addition to the password is

required to enter a special code, generated by mobile application

2.2. Basic configuration 58

Blitz Identity Provider, version 5.23

The set of methods may vary depending on the type of license used. To go to the method settings, click the

button Go to the method configuration (when the method is initially configured) or link Go to Settings (to adjust

the current preset settings).

2.2. Basic configuration 59

Blitz Identity Provider, version 5.23

Refer to the following sections for guidelines on how to configure each method. To enable or disable an authen‐

tication method, set the switch to the desired position.

General settings

On the tab General settings of the section Authentication you can set:

• Default authentication level: specify First factor to require users to verify the first authentica‐
tion factor only (except for users whose settings include the need to verify the second factor). Specify First

and second factor to require users to verify the second authentication factor in addition to the first factor.

• Session duration parameters:

– Session inactivity timeout: specify time in seconds within which a user session will re‐

main active despite of the user inactivity (absence of transitions between different applications).

– Maximal session timeout: specify maximum time in seconds within which a user session will

remain active (regardless of whether there is any user action).

Attention: The duration of a user’s SSO session can also be affected by the blc cookie validity

period on the Blitz Identity Provider side. By default, the blc cookie validity period is 10800

seconds. If the maximum session duration exceeds this value, the user may be asked to log in

again as soon as the cookie expires, even with an active SSO session. In this case, make changes

(page 278) to the configuration file.

• Logout screen display time (in seconds): time in seconds that indicates how long the lo‐

gout screen will be shown to a user before they are automatically redirected to the application transition

2.2. Basic configuration 60

Blitz Identity Provider, version 5.23

page after the logout.

• Configure account memorization:

– Account memorization is enabled by default. Disable it if necessary.

– Account memorization: account memorization mode. Specify Memorize one account to make

each log‐in by a new account in the browser overwrite the memorized log‐in of the previous account

or :bdg‐primary: Memorize all accounts so that each log‐in by a new account adds another account

to the list of memorized accounts in the browser.

– Displayed username: specify how to form a username displayed on the login page as a regular

expression, for example: ${family_name-} ${given_name-}. This regular expression allows
displaying the last name and first name of the user stored in the family_name and given_name
attributes.

– Displayed user ID: specify how to form an account ID displayed as the second line on the login

page, as a regular expression, for example: ${email-$phone_number}. This regular expres‐

sion allows to display one of the contacts stored in the email or phone_number attributes (if

both are present, email is displayed). You can use value masking when customizing. For example,

the ${phone_number&maskInMiddle(3,3)} rule will display the middle numbers of a phone

number as *.

– Show avatar: specify whether to display a user avatar on the login page.

2.2. Basic configuration 61

Blitz Identity Provider, version 5.23

Password policies

Password policies are configured on the Password policies tab of the Authentication section of the admin console.

The following settings are available:

• The minimum password length is the number of characters in the password (at least 8 characters is recom‐

mended);

• Password dictionary ‐ a text file containing a list of forbidden passwords is specified. Each password

should be on a separate line. If large files are used, it is recommended to upload them directly to the

server, and specify the path to the file in the dicPath setting in the blitz.prod.local.idp.
password-policy settings block in the blitz.conf file.

• Character group ‐ sets the minimum required number of character groups in the password. For each char‐

acter group, you can set the settings in the character group table:

– Valid characters ‐ a regular expression is used to specify the set of characters of a group. For example,

you can expand the allowed characters of numbers by changing the regular expression to the following

2.2. Basic configuration 62

Blitz Identity Provider, version 5.23

‐ [0-9٩-٠], you can expand the allowed character sets of letters ‐ [a-za-я] and [A-ZA-Я], add
or remove the allowed special characters ‐ [!@#$%^&*()+-?.,;:’`“{}[]><=~/_].

– Minimum characters ‐ how many minimum characters from the group must be used in the password

that the group is considered to be involved in the password.

• Prohibit using old passwords ‐ the setting specifies how many old passwords should be memorized to pre‐

vent entering a password from the history of used passwords when setting a new password.

• Minimum password lifetime ‐ the minimum password lifetime, in seconds; until this time has elapsed, the

user will not be allowed to set a new password. If this check should not be performed, the setting should

be set to an empty value.

• Maximum password lifetime ‐ the maximum lifetime of the password, in seconds; once this time expires,

the user will be prompted to set a new password. If this check should not be performed, the setting should

be set to an empty value.

• Minimum number of different characters ‐ how many changed characters should be in the new password

compared to the previous one (for cases when the user changes the current password to a new one). If

this check should not be performed, the setting should be set to an empty value.

Security key management

Configuring security keys

Blitz Identity Provider allows you to use security keys (WebAuthn, Passkey, FIDO2, U2F) for identification and

authentication. The WebAuthn’22 specification is used to interact with security keys.

The following key types are supported:

• External keys ‐ are hardware devices in the form of USB keys or key fobs connected to PCs, tablets and

phones via USB port, Bluetooth or NFC. The keys do not require drivers or plug‐ins to be installed on the

device ‐ interaction with the keys is performed through the built‐in capabilities of browsers.

• Built‐in keys ‐ Authenticationmechanisms built into the device and operating system that support WebAu‐

thn:

– Windows Hello ‐ you can sign in using Windows PIN, fingerprint verification or facial recognition;

– Touch ID or password on your MacBook;

– Touch ID or Face ID on an iOS cell phone or fingerprint verification or facial recognition in Android.

Security keys are configured on the tab Security Keys of the section Authentication of the admin console.

22 https://fidoalliance.org/fido2/

2.2. Basic configuration 63

https://fidoalliance.org/fido2/

Blitz Identity Provider, version 5.23

The following settings are available:

• Authentication system name – it is necessary to set the name of the authentication system or application

name suitable for displaying to users.

• Authentication systemdomain –mustmatch the domain used by the authentication systemor be a superior

domain. Security keys will be issued to this domain.

• Signature algorithms – it is recommended to specify ES256 and RS256 algorithms as a minimum to work

with Passkey, Windows Hello and most common hardware FIDO2 and U2F security keys.

• Limit Allowed AuthenticationMeans – If “Not Selected” is selected, authenticationmeans are not limited. If

you select “Portable”, only hardware security keys (USB, Bluetooth, or NFC) will work. If you select “Built‐in

Platform”, only security keys built into devices (Windows Hello, Touch ID on MacBooks, Touch ID and Face

ID on cell phones, and using your phone as a Bluetooth‐enabled authentication tool) will work).

• Key Verification Mode – When “Browser detection” is selected, the user will be shown all security keys

available on their device for the authentication system domain. When “Server Discovery” is selected, the

user will be prompted for a login, and then only those keys that are available on the device and linked to

the user’s account on the server will be shown.

2.2. Basic configuration 64

Blitz Identity Provider, version 5.23

• Wait Time – Specifies the time in milliseconds that the authentication system will wait for the browser to

respond to a request to access the security key.

• Displayed user name – specifies the wildcard pattern according to which the name of the memorized user

is displayed on the Security Key login page in the authentication system (relevant when using the “Server

detection” mode).

• Displayed Account ID – Specifies a wildcard string pattern that displays the name of the security key to the

user on the device.

• Normal Authentication Counter Shift – a setting that specifies that the authentication server will compare

the authentication count on the device with the authentication count of the same key on the server and,

if it differs by more than the number specified in the counter, will disallow the use of the security key (key

cloning protection).

Blitz Identity Provider authentication server is configured as standard to trust all known root and intermediate

certificates of the TPMmodules, FIDO, as well as the current Apple and Google certificates required to verify the

signature of FIDO2 and U2F attestation objects. If necessary, скорректируйте (page 265) allowed attestation

certificates.

The use of security keys on the first and second factor is described in the following sections.

Logging in via WebAuthn, Passkey, FIDO2

It is possible to use security keys (WebAuthn, Passkey, FIDO223) to log in to Blitz Identity Provider.

To configure the login using security keys, you need to set the following settings on the tab First factor:

• Allowed attestation modes – using only FULL and FULL_NO_ROOTmodes will increase security, but will

not allow to use some keys for login, as well as Windows PIN code, because when registering such keys the

attestation object comes without chipset or key manufacturer’s signature or using a self‐signed key. The

use of SELFmode allows an attacker to implement aman‐in‐the‐middle attack to spoof the key at the time

of registration, in case the user’s device is controlled by the attacker.

• Show method only to users who have bound a security key to the account – If Blitz Identity Provider has

already identified the user, it already knows if security keys are configured for the user’s account. If security

keys are not configured, you can configure that the user is not shown the login method using the security

key.

• Equate the use of this method to the use of the first and second factor – if the option is enabled, logging in

by security key will mean that the user has passed two‐factor authentication.

• Правила соответствия – при входе по ключу безопасности пользователя просят ввести логин.

Настройка правил соответствия позволяет указать правила поиска соответствия учетной записи

введенному логину. Для найденной учетной записи будет запрошена проверка входа по ключу

безопасности. Для создания правила используется строка подстановки: ${login} – это строка,

введенная пользователем в поле «логин». В результате, например, правило email=${login}
означает, что строка, введенная пользователем, будет сравниваться с атрибутомemail в хранилище
данных.

• Attribute store selection rules – as in the case of sign in by login and password, by default the user search

for authentication is performed in all active stores. In the Attribute store selection rules block you can

configure rules (page 67), when executed, the user will be searched in a certain store.

23 https://fidoalliance.org/fido2/

2.2. Basic configuration 65

https://fidoalliance.org/fido2/

Blitz Identity Provider, version 5.23

2.2. Basic configuration 66

Blitz Identity Provider, version 5.23

Login confirmation with WebAuthn, Passkey, FIDO2, U2F

It is possible to use security keys (WebAuthn, Passkey, FIDO224, U2F) to log in to Blitz Identity Provider.

To configure login confirmation using security keys, you need to set the following settings on the tab Second

factor:

• Allowed attestation modes – using only FULL and FULL_NO_ROOTmodes will increase security, but will

not allow to use some keys for login, as well as Windows PIN code, because when registering such keys the

attestation object comes without chipset or key manufacturer’s signature or using a self‐signed key. The

use of SELFmode allows an attacker to implement aman‐in‐the‐middle attack to spoof the key at the time

of registration, in case the user’s device is controlled by the attacker.

• Show method only to users who have bound a security key to the account ‐ If security keys are not config‐

ured, you can configure that the security key login confirmation method is not shown to the user.

Logging in using login and password

To use the username and password login, the following matching rules must be specified ‐ to determine how the

given username relates to the users in the data store.

To create a rule, a wildcard string is used: ${login} is the string entered by the user in the “login” field. As a

result, for example, the rule email=${login}means that the string entered by the user will be compared to

the email attribute in the data store;

24 https://fidoalliance.org/fido2/

2.2. Basic configuration 67

https://fidoalliance.org/fido2/

Blitz Identity Provider, version 5.23

In the log‐in settings, it is possible to enable the password policy check (page 245). The password entered by a user

will be checked against the password policy at log‐in time. If the password does notmeet the policy requirements,

the user can set a new password or skip this step.

To configure password validation against the password policy at login, you must:

• select the Always check the user's current password against the password
policy option or enter the name of some header in the Check if HTTP header is present
field (in this case, if the HTTP request contains the specified header with the true value, the current user

password will be checked against the password policy);

• the option Allow the user to skip changing a password that does not comply
with password policies allows the user to refuse to change the password when logging in;

• specify the number of failed attempts for temporary blocking. After the specifiednumber of failed attempts,

the user will be temporarily blocked from using this authentication method;

• duration of the temporary blocking (in minutes).

2.2. Basic configuration 68

Blitz Identity Provider, version 5.23

You can control the password protection in the login settings. When the protection is enabled, the password

verification is slowed down. After entering the password, the user will wait for the verification for the specified

period Delay time (in seconds).

Administrator can select the following protection modes in the Protection setting:

• Automatic mode at system and user level ‐ protection will be enabled for all users if

the percentage of unsuccessful authentications exceeds the Enable system protection at
threshold, and disabled if the percentage of unsuccessful authentications falls below the Disable
system protection at threshold;

• Automatic mode at user level ‐ the protection will be triggered for users for whom the number

of unsuccessful password checks exceeds the number specified by the Enable user protection
at threshold setting;

• Authentication delay for all users ‐ protection will be enabled for all users;

• Disabled ‐ the protection will be disabled.

System protection activation threshold and System Protection Disable Thresh-
old parameters are set in percentages corresponding to the percentage of unsuccessful authentications in the

total number of authentication attempts.

An example of how to configure password protection is shown below.

To complicate automatic password mining, you can enable the Proof of work performance setting in

Blitz Identity Provider. Then each time a user logs in with a username and password, the user’s browser will have

to perform a computationally complex task. If you fail to provide a solution, provide an incorrect solution, or

provide a solution at the wrong time, Blitz Identity Provider will return an error. As a result, it will be impossible

to know if the username and password are correct.

2.2. Basic configuration 69

Blitz Identity Provider, version 5.23

The following can be configured in the Proof of work performance settings block:

• enable the Request proof of completion of work setting.

• if necessary, set the Request only if HTTP header is present setting ‐ this is useful if you

want to allow autotests to log in by password without having to pass the check. In this case, on the web

server it is necessary to set the header from this setting for user requests, and not to set the header for

requests coming from autotests.

• set Work complexity index ‐ the coefficient value from 1 to 160 bits is set. Each bit increases the

complexity by 2 times. The recommended value is 15 bits.

• Maximum decision time ‐ time in seconds, in which the browser should send the result of the work.

If the value is not specified, the task is expected to be solved in 1800 seconds. The time is counted from

the moment the server generates the task at the moment of displaying the login page.

After setting the setting, it is recommended to press the Test calculation button before saving to get a rough idea

of the run time on the current unit.

In the Rules for selecting an attribute repository block you can configure the rules, when executing which the

user will be searched only in the specified store. By default, users for authentication are searched in all active

attribute storages. You can specify several alternative storage selection rules. This will allow authenticating some

users through one repository and others through another. Substitution strings are used to create a rule.

For example, in the screenshot below, it is configured that when a login is requested by an application with the

test_app identifier, the user’s login and password will be checked against the test_db repository. Login to

all other applications will be performed through the main repository.

2.2. Basic configuration 70

Blitz Identity Provider, version 5.23

Logging in with electronic signature tool

Configuring the authentication method in the Admin console

When using an electronic signature tool for authentication, you must:

• in the Certificates setting block load the certificates of the certification authorities, confirming the authen‐

ticity of electronic signature key certificates and configure interactionwith the external electronic signature

verification service.

• configure in the Compliance rules block the parameters of matching a user account in the storage by its

attributes from an electronic signature certificate. Matching rules use substitution strings. For example,

thecn=${SUBJECT.CN} rulemeans that theSUBJECT.CN attribute of the certificatewill be compared

to the cn attribute in the data store. It is possible to specify multiple conditions at the same time, as well

as to specify alternative rules.

When configuring electronic signature login, you can also specify:

• whether thismethod should be used as the first and second factor. If yes, a user authenticated by electronic

signature will be considered to have passed two‐factor authentication (see the figure below for an example

setting);

• whether to check the validity of the certificate. In this case, Blitz Identity Provider will use the revoca‐

tion list distribution point (CRL) specified in the certificate to check if the certificate has been revoked.

To activate this feature, check the checkbox Verify that the user's certificate has not
been revoked;

• whether to create (register) an account at the first login by e‐signature. In this case, if the user is not

found by certain matching rules, the user will be prompted to register an account. To enable this feature,

you should check the checkbox Create an account if the user is not found by the
electronic signature certificate and configure the user registration rules ‐ how to fill in

the attributes in the repository from the certificate attributes. You should use substitution strings to set

the rules. For example, the email=${SUBJECT.E} rule means that the email attribute will store the

e‐mail from the user’s electronic signature certificate.

2.2. Basic configuration 71

Blitz Identity Provider, version 5.23

2.2. Basic configuration 72

Blitz Identity Provider, version 5.23

Using and updating the plug‐in

A special plugin ‐ Blitz Smart Card Plugin ‐ is used on users’ computers for correct operation of the e‐signature

login. When logging in by e‐signature for the first time, the user will be prompted to install the plugin. After

downloading the file and running it, the user should go through all the steps of the plugin installation. When

logging in again from this device, the plugin will not need to be installed again.

Blitz Identity Provider comes with a version of the plugin that allows you to work with electronic signatures as an

authentication method.

If you need to update the Blitz Smart Card Plugin version, you should replace the plugin distributions ‐ they are

located in the assets directory with the Blitz Identity Provider installation, in the assets.zip archive. The

structure of the archive is as follows:

plugins/sc/deb/BlitzScPlugin.deb
plugins/sc/rpm/BlitzScPlugin.rpm
plugins/sc/win/BlitzScPlugin.msi
plugins/sc/mac/BlitzScPlugin.pkg
plugins/sc/mac/BlitzScPlugin-10.14.pkg
...

You need to unzip the assets.zip archive, replace the files with the plugin distribution and zip the files back

to assets.zip.

Logging in via external identification services

The list of available external identity services depends on the edition of Blitz Identity Provider and the options

purchased.

Logging in using the following external identity providers is possible:

• Apple ID;

• Facebook?;

• Google;

• identity providers running OpenID Connect;

• identity providers running SAML.

Connections to external identity servicesmust be preconfigured (page 109) in the Admin Console on the tab Social

login providers.

In the settings section Logging in via external identification services you must select which of the configured

identity providers should be used for logging in.

2.2. Basic configuration 73

Blitz Identity Provider, version 5.23

Logging in with proxy authentication

Proxy authentication (authentication by proxy server) is performed with the data sent in HTTP headers.

Important: When proxy authentication is enabled, Blitz Identity Provider only identifies the user, while authenti‐

cation (as a result of certificate verification) is performed by the proxy server. Enabling this authenticationmethod

is acceptable when all users access Blitz Identity Provider through the proxy server.

For this method to work correctly you need to specify:

• required HTTP headers ‐ list of HTTP headers that must be present to pass user proxy authentication,

• HTTP header with user certificate (optional parameter) ‐ header containing x.509 user certificate,

• matching of HTTP header values and user identity data in the attribute store.

It is possible to configure mapping of attributes of the certificate passed in the HTTP header and user data to the

storage.

An example of proxy authentication login settings is shown below:

2.2. Basic configuration 74

Blitz Identity Provider, version 5.23

Logging in using operating system session

The operating system session logon method allows users to avoid additional identification and authentication in

Blitz Identity Provider if they have previously logged on to the organization’s network from their PC and have been

identified and authenticated in the operating system (logged on to the network domain). Such users will have

end‐to‐end identity access to all applications connected to Blitz Identity Provider.

To log in using an operating system session, an organization must have a Kerberos server deployed (alone or as

part of the organization’s domain controller) and configured as described below.

2.2. Basic configuration 75

Blitz Identity Provider, version 5.23

Domain controller (Kerberos server) configuration

In the domain controller you need to register an account for Blitz Identity Provider server. For the created account,

on the Account page in the Account options block of the domain controller snap‐in, enable the settings User
cannot change password and Password never expires.

Also note the optionsThis account supports Kerberos AES 256 bit encryption and disable
pre‐authentication Do not require Kerberos pre-authentication.

In the Group Policy Management snap‐in, configure the Configure encryption types allowed for
Kerberos policy by specifying the following possible values: RC4_HMAC_MD5, AES128_HMAC_SHA1, and
AES256_HMAC_SHA1.

Example of configuration:

2.2. Basic configuration 76

Blitz Identity Provider, version 5.23

Next, you must create a Service Principal Name (SPN) to identify Blitz Identity Provider server with the Kerberos

server. This is accomplished using the following command:

ktpass -princ HTTP/idp.company.ru@DOMAIN.LOC -mapuser DOMAIN\blitzidpsrv -out C:\
→˓temp\spnego_spn.keytab -mapOp set -crypto ALL -ptype KRB5_NT_PRINCIPAL /pass␣
→˓SecretPassword

Parameters of the ktpass command:

• the mapuser parameter value is the name of Blitz Identity Provider server account created in the domain,

for example, DOMAIN\blitzidpsrv;

• the value of theprinc parameter is the name of the SPN of Blitz Identity Provider server for authentication

in the Kerberos environment. This name consists of the host name of Blitz Identity Provider server, the

uppercase Kerberos Realm name (usually the same as the domain name), and the transport protocol used

(HTTP). An example of an SPN value is HTTP/idp.company.ru@DOMAIN.LOC. It is important that the

HTTP/ at the beginning of the SPN name be in capital letters, as in the example.

• parameter mapOp ‐ if set to add, the new SPN will be added to the existing ones. If set to set, the SPN
will be overwritten.

• parameter out ‐ specifies the path to the generated keytab file. For example, C:\temp\spnego_spn.
keytab;

• the /pass parameter is the password value for Blitz Identity Provider server account in the domain.

• the crypto and ptype parameters specify restrictions on the algorithms used and the type of Kerberos

service generated. It is recommended to set the parameters as in the above example -crypto ALL
-ptype KRB5_NT_PRINCIPAL.

The generated keytab file must be saved. It will be required for further configuration in Blitz Identity Provider

admin console.

2.2. Basic configuration 77

Blitz Identity Provider, version 5.23

Settings in Blitz Identity Provider admin console

It is necessary to go to the Authentication section in the management console to the settings of the login method

Logging in by operating system session. In the opened window, load the previously generated keytab file. The

SPN name will be set automatically in accordance with the uploaded file.

Based on the results of the keytab file download, information about the corresponding Kerberos service will be

displayed.

If necessary, you can:

• delete the loaded keytab file;

• load more keytab files if you connected Blitz Identity Provider to more than one domain controllers.

Next, you need to define the matching parameters for the Kerberos token (TGS) and the account in Blitz Identity

Provider.

For example, you can specify that the user ID (username) received from the Kerberos token must match the

sAMAccountName attribute received from the LDAP directory (Microsoft Active Directory).

The next step is to set the delay parameters for the login method using an operating system session.

2.2. Basic configuration 78

Blitz Identity Provider, version 5.23

Blitz Identity Provider provides two possible scenarios for using the operating system session:

Basic Scenario. Users log in to the operating system, and thereafter must end‐to‐end log in to all applications

connected to Blitz Identity Provider. Providing users with the ability to log into applications under a different

account is not required. In this case, you should set theDelay time before method start to0 seconds.
When the application is accessed, an end‐to‐end login will be attempted immediately through the operating

system session.

Additional scenario. Users are not always able to log on to the operating system domain, or users in some cases

need to be able to log on to applications under a different account than the one they used to log on to the domain.

In this case, the Delay time before method start should be set so that the user has enough time to

be able to cancel automatic login using an operating system session.

Waiting of token receipt should be set sufficient to allow the Kerberos server to respond to Blitz Iden‐

tity Provider. Usually 5 seconds is sufficient.

As in the case of login by login and password, by default the user search for authentication is performed in all

active storages. In the Rules for selecting an attribute repository block you can configure the rules, when executed,

the user search will be performed in a certain storage (page 67).

Users’ browsers configuration

Depending on the browser used by the user, it may be required to additionally configure it to support Kerberos

authentication.

For Windows browsers, you need to set the following settings:

• open Start → Control panel, change the viewing option from Category to Small icons, select
Browser properties in the opened settings;

• in the new window, select Security → Local intranet and click Websites. In the window that opens, click

Additional and add Blitz Identity Provider site to the list of Local intranet sites by clicking Add;

• in the Properties: Internet→Security→Local intranetwindow, click theOther…button. In thewindow that

opens, find the User authentication→ Login setting. Set it to Automatic network login
only in the intranet area.

2.2. Basic configuration 79

Blitz Identity Provider, version 5.23

You can choose not to make the above settings for the Windows operating system and, as an alternative, to be

able to log in by operating system session in the Google Chrome browser, then you can start the browser with the

following startup settings:

Chrome.exe –auth-server-whitelist="idp.domain.ru" –auth-negotiate-
→˓delegatewhitelist="idp.domain.ru" –auth-schemes="digest,ntlm,negotiate"

Where as idp.domain.ru you need to specify the URL of Blitz Identity Provider site.

You can also set the following settings in theWindows registry to run the Google Chrome browser without startup

options.

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Google]

(continues on next page)

2.2. Basic configuration 80

Blitz Identity Provider, version 5.23

(continued from previous page)

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Google\Chrome]
"AuthNegotiateDelegateWhitelist"="idp.domain.ru"
"AuthSchemes"="basic,digest,ntlm,negotiate"
"AuthServerWhitelist"="idp.domain.ru"

For Mozilla Firefox, you need to set the following settings (for any operating systems):

• enter about:config in the browser address bar and press Enter. In the next window, en‐

ter network.nego in the Filters field. Double‐click on the network.negotiate-auth.
trusted-uris entry found and set it to the URL of the site with Blitz Identity Provider, for example,

idp.domain.ru. When specifying addresses, you can use an asterisk (*) and specify multiple URLs

separated by commas, for example: https://*.idp.domain.ru,http://*.idp.domain.ru.
Close the pop‐up window with the OK button.

• double‐click on the network.negotiate-auth.delegation-uris entry you found and set it to

theURLof the sitewith Blitz Identity Provider, for example,idp.domain.ru. When specifying addresses,

you can use an asterisk (*) and specify multiple URLs separated by commas, for example: https://*.
idp.domain.ru,http://*.idp.domain.ru. Close the pop‐up window with the OK button.

• open the network.auth-sspi parameter, set its value to true;

• restart the browser.

For Google Chrome in macOS and Linux, you need to run Google Chrome in a special way:

"/Applications/Google Chrome.app/Contents/MacOS/Google Chrome" --args --auth-
→˓server-whitelist="idp.domain.ru" --auth-negotiate-delegate-whitelist="idp.domain.
→˓ru"

Where as idp.domain.ru you need to specify the URL of Blitz Identity Provider site.

No separate configuration is required for Apple Safari in macOS.

Blitz Identity Provider application launch settings

Users may have problems logging in by operating system session if they use Internet Explorer browser and if their

account is included inmany security groups in the domain, or if the DN of the account is long enough. To avoid this

situation, it is necessary to set a special JAVA parameter when launching the blitz-idp authentication service

application that defines a large allowable HTTP header size. To do this, edit the /etc/default/blitz-idp
file. Add a key to the JAVA_OPTS parameter:

-Dakka.http.parsing.max-header-value-length=16K

Web Server configurations

Users may have problems logging in by operating system session if they are using the Internet Explorer browser,

and if their account is included in many security groups in the domain, or if the DN of the account is long enough.

To avoid this situation, you must adjust the web server settings that determine the allowable size of header

buffers.

Recommended buffer values for nginx are given below:

proxy_buffer_size 16k;
proxy_buffers 4 16k;
proxy_busy_buffers_size 16k;
client_body_buffer_size 16K;

(continues on next page)

2.2. Basic configuration 81

Blitz Identity Provider, version 5.23

(continued from previous page)

client_header_buffer_size 16k;
client_max_body_size 8m;
large_client_header_buffers 2 16k;

Debugging operating system session login problems

If the operating system session login still does not work for users with the settings made, it is recommended to

run the following command on the user’s computer at the command line:

klist

If the command successfully returns TGS credentials for the SPN configured for Blitz Identity Provider, then you

should check the correctness of the settings on the user’s browser side and in Blitz Identity Provider. If TGS

credentials for Blitz Identity Provider are missing, you can request them using the following command (you must

specify the correct SPN and company domain name):

klist get HTTP/idp.company.ru@DOMAIN.LOC

If the command does not return the received TGS credentials, then we need to check if the settings on the Ker‐

beros server are correct.

Logging in with email

Blitz Identity Provider allows logging in using email as the first authentication factor. In this case, for logging in a

user is required to enter the code sent to their email address. To configure the method, follow the steps below.

Step 1. Add the method to blitz.conf

To make the Authentication by email method appear on the First factor tab, do the following:

1. Open the /usr/share/identityblitz/blitz-config/blitz.conf file.

sudo vim /usr/share/identityblitz/blitz-config/blitz.conf

2. In the first list of the blitz.prod.local.idp.login.factors settings block, add a new block

with the emailmethod:

"login" : {
"factors" : [

[
…

],
[

{
"enabled" : false,
"method" : "email"

},
…

]
],
…

}

3. Restart the services.

2.2. Basic configuration 82

Blitz Identity Provider, version 5.23

sudo systemctl restart blitz-idp blitz-console blitz-recovery

Step 2. Configure the method in the console

In the admin console, do the following:

1. On the Authentication by email tab, configure the following settings:

• Method of account identification – specify a regular expression. For example, the email=${lo-
gin} rule means that the value entered by a user in the login form will be matched with the email
attribute.

• Length of the confirmation code.

• Code validity period.

• Number of attempts per log‐in to enter the confirmation code.

• Total number of attempts (number of code sends and code entry attempts, after which this authenti‐

cation method will be temporarily blocked for the user).

• Blocking time when attempts are exceeded (in minutes).

• Sending method: specify the attribute as an expression that indicates where a user’s email address is

stored, for example, ${email}.

• Set the attribute store selection rule to search for a user‐entered email address.

2.2. Basic configuration 83

Blitz Identity Provider, version 5.23

2. Enable the Authentication by email method on the Authentication ‐> First factor tab.

3. Configure the Blitz Identity Provider connection to the SMTP service (page 152).

Logging in with confirmation codes

You can use push notifications sent to the mobile app, or SMS as the first factor of authentication.

Attention: If a user does not have a mobile phone number, they will not be able to use the login verification

via SMS.

To use the confirmation codes, you must:

• configure and enable the authentication method Authentication by code sent via SMS/push. You need to

configure:

– way to identify an account ‐ specify a regular expression. For example, the phone_number=${lo-
gin} rule means that the value entered by the user in the login form will be matched with the

phone_number attribute;

– length of the confirmation code;

– validation time of the confirmation code;

– number of attempts to enter the confirmation code for 1 login;

– total number of attempts (number of code sends and code entry attempts, after which this authenti‐

cation method will be temporarily blocked for the user);

– blocking time when attempts are exceeded (in minutes);

– configure how to send the code:

* send push notification ‐ you should specify an attribute with a cell phone number or other user

ID required by the service, for example, ${phone_number};

* send SMS ‐ specify attribute with user’s cell phone number, for example, ${phone_number};

2.2. Basic configuration 84

Blitz Identity Provider, version 5.23

– rule for selecting an attribute store to search for a phone number entered by a user.

• configure Blitz Identity Provider connection to SMS gateway and the (page 152) push notification service.

2.2. Basic configuration 85

Blitz Identity Provider, version 5.23

Logging in from known device

Login from a known device allows for not requesting user identification and authentication (first factor method)

if the user has, within a certain period of time, already logged in from that device and browser. In other words,

the user can log in without authentication after restarting the browser.

Setting the method includes specifying the duration of device memorization. It can also be set to not require

two‐factor authentication when logging in from a memorized device (option “Equate the use of this method to

the use of the first and second factor”). If this option is enabled, logging in from a known device will mean that

the user has passed two‐factor authentication.

Logging in by one‐time link

One‐time link login is used to provide automatic login after a user has self‐registered an account, recovered a

forgotten password, or when using a special login mode when opening a web browser from a mobile application

to which the user has previously logged in.

Note: Learn more (page 324) about the last use case.

Method customization includes specifying the validity time of the link used for automatic login. For automatic

login towork, nomore than the time specified in the settingmust have elapsed from the time the link is generated

(after successful completion of registration or password recovery or receipt of the css parameter by the mobile

application) until the user login is initiated, and that the link has not been used before.

2.2. Basic configuration 86

Blitz Identity Provider, version 5.23

Logging in by QR code

Blitz Identity Provider provides the option to set up a QR code login to the web application as the first authenti‐

cation factor.

The login process is organized as follows:

• A user in a browser initiates a login to a web application. Blitz Identity Provider displays a login page. On

the login page, the user selects “Login by QR Code”.

• Blitz Identity Provider displays a QR code and instructions to the user on the login page. The QR code has

a limited validity period (a timer with the QR code validity period is shown to the user).

• The user launches the mobile application of the company, which has built‐in support for the QR code login

mode, and scans the QR code with the help of this application.

• Themobile app shows the user detailed login information received fromBlitz Identity Provider (the name of

the app being logged into, the IP address, browser, and operating system name of the device being logged

into).

• The user in the mobile app decides whether to allow or deny entry.

• Depending on the user’s decision on the computer, the user successfully logs into the application or the

login request is denied.

Customizing the method includes specifying the following parameters:

• QR code validity time ‐ during this period the user must scan the QR code and make a decision to log in;

• link thatwill be encoded in theQR code ‐ indicateswhich applicationorwebpage should be launched in case

the QR code is read by the standard “Camera” application. The encoded QR code will be passed to the link

as a parameter (the link will be QR_URL?code=b0671081-cb73-4839-8bc1-8cf020457228);

• logo link (optional) ‐ this logo will be displayed in the center of the QR code.

2.2. Basic configuration 87

Blitz Identity Provider, version 5.23

Automatic user identification by session properties

Blitz Identity Provider can perform automatic user identification and grant access based on pre‐calculated session

properties. Any session properties that can be defined by the Customer’s tools and provided in Blitz Identity

Provider are supported.

Tip: A special case of using the method is the user logging in using a mobile phone number that is automatically

determined by its IP address by the Customer‐the mobile operator.

Attention: Automatic identification is possible only for the first factor.

To use this authentication method, follow the steps described below.

Step 1. Create the login procedure

To use automatic identification, you must create (page 191) a login procedure performed before passing the

first authentication factor, which will request session properties from the Customer’s service. For example, in a

special case, when logging in using an automatically determined phone number, the procedure should perform

the following actions:

1. Determining the user’s IP address. If the IP address is in the specified range, the Customer’smobile operator

service is called to determine the mobile phone number.

2. After receiving the phone number, the procedure requests Blitz Identity Provider to log in using the auto‐

matic identification method.

Step 2. Add a method to blitz.conf

In order for the automatic identification method to be displayed on the tab Authentication ‐> First factor, follow

these steps:

1. Open the configuration file /usr/share/identityblitz/blitz-config/blitz.conf.

sudo vim /usr/share/identityblitz/blitz-config/blitz.conf

2. Add the method to the list of available methods of the first factor of the block blitz.prod.local.
idp.login.factors by analogy with the example below. The methods of the first factor are specified

in the first section of the block. The name of the method should consist of the prefix sprop and an iden‐

tifier: for example, the method sprop_msisdn from the example has the identifier msisdn.

Note: You can add several methods.

"login" : {
"factors" : [

[
{

"enabled" : false,
"method" : "sprop_msisdn"

},
…

],
[

…

(continues on next page)

2.2. Basic configuration 88

Blitz Identity Provider, version 5.23

(continued from previous page)

]
],
…

}

3. Restart the services.

sudo systemctl restart blitz-idp blitz-console

Step 3. Configure the method in the console

The configuration of the method in the admin console is performed as follows:

1. In the admin console, go to Authentication ‐> First factor ‐> method settings Automatic identification.

2. Map the attribute stored in the Blitz Identity Provider data source to the session property received from

the Customer’s service when performing the login procedure. After receiving the session property, Blitz

Identity Provider will search for its value among the values of the specified attribute and, if successful, will

allow logging in to the corresponding account. For example, mapping phone_number=${p_msisdn}
means that the session property p_msisdn will be compared with the attribute phone_number in the

data store.

Tip: You can add several search conditions among the attributes that must be fulfilled simultaneously in

order for the user to be identified, as well as enter an alternative rule.

3. By default, after the user is automatically identified, their ID and a login confirmation request are displayed

on their screen. Set a rule for generating a user ID from its attributes as a substitution string. This may be

a disguised phone number, username, etc.

To deactivate the login confirmation, check the box Do not show the login confirmation screen to the user.

4. Click Save.

5. By default, users are searched for authentication in all active repositories. In the block Attribute Store

Selection Rules you can set up rules that will search for a user in a specific store. You can set several

alternative storage selection rules. This will allow you to authenticate some users using one storage, and

others using another.

2.2. Basic configuration 89

Blitz Identity Provider, version 5.23

To create a rule, use the following components:

• flag not: indicates that the condition is inverted;

• the first column is the expression to be checked, for example, an attribute of an account, an application

identifier, etc.;

• the second column: the selection condition in the form of a regular expression, for example, the value

of the user attribute, the value of the application identifier, etc.

For example, in order to authenticate all users whose phone number contains the code980 in the specified
storage, create a rule as shown in the figure below.

6. Click Save.

Step 4. Customization of texts

If you use several methods of automatic identification (page 88), you should customize the interface texts for

each of them, guided by algorithm (page 234).

You will need to include the method name or method identifier in the text string identifier. Method name is

defined (page 88) in the configurationfile/usr/share/identityblitz/blitz-config/blitz.conf
and consists of the prefix sprop_ and themethod identifier: for example, themethod sprop_msisdn has the
identifier msisdn.

The following methods and strings are used for customization:

Login form

Customization using the method name <sprop_id>:

login.methods.sprop.head.title.<sprop_id>=Confirm log-in with phone number
login.methods.sprop.info.<sprop_id>=Your phone number
{0}.
login.methods.sprop.btn.consent.<sprop_id>=Log in
login.methods.sprop.btn.refuse.<sprop_id>=Log in with another phone number

Displaying the method in the list of available methods during authentication

Customization using the method identifier <id>:

login.methods.switcher.title.sprop.<id>=Autologon with phone number
login.methods.switcher.label.sprop.<id>=Autologon with phone number

2.2. Basic configuration 90

Blitz Identity Provider, version 5.23

Displaying a method in the list of methods in the admin console

Customization using the method name <sprop_id>:

page.authn.<sprop_id>.title=Autologon with phone number
page.authn.<sprop_id>.info=To identify a user, we analyze a session property p_
→˓msisdn which is calculated and saved when the authentication flow starts.

Form of method configuration in the console

Customization using the method name <sprop_id>:

page.method.sprop.title.<sprop_id>=Autologon with phone number
page.method.sprop.info.<sprop_id>=<p>In order to correctly identify the user,␣
→˓specify how the username should be formed from session properties and which␣
→˓attribute in the data source it corresponds to. You can create several␣
→˓alternative rules. </p>For example, the rule <code>phone_number=$'{p_msisdn}'</
→˓code> means that the session property <code>p_msisdn</code> will be compared to␣
→˓the <code>phone_number</code> attribute in the data store.</p>

The result of executing the method on the Events tab of the admin console

• Successful login: add the line audit.method.<sprop_id>.

• Login failed: add the line console.audit.type.auth_failed.<sprop_id>.

audit.method.<sprop_id>=Autologon with phone number
console.audit.type.auth_failed.sprop_msisdn=Error when logging in with phone number

Displaying an unsuccessful login event in the User profile

To display an unsuccessful login in the User profile, add the line profile.audit.type.auth_failed.
<sprop_id>.

profile.audit.type.auth_failed.<sprop_id>=Error when logging in with phone number

Log‐in confirmation with a HMAC‐based one‐time password (HOTP)

Any hardware key fob compatible with the RFC4226 “HOTP: An HMAC‐Based One‐Time Password Algorithm”25

standard can be used to verify the second factor of authentication using the One‐Time Secret‐based Password

(HOTP) authentication method.

To use HOTP, you must:

• configure and enable this authentication method;

• upload a HOTP device description file to Blitz Identity Provider. The description file is provided by the HOTP

device provider. To upload the description file, use the ”Devices” menu section in Blitz Identity Provider

admin console;

• bind the HOTP device to the user account and issue the HOTP device to the user. Binding can be done in two

ways ‐ either the administrator binds the device by serial number to the user account in the Management

Console under the “Users” menu, or the user binds the device to his/her account by himself/herself using

the “My Account” web application.

25 https://tools.ietf.org/html/rfc4226

2.2. Basic configuration 91

https://tools.ietf.org/html/rfc4226

Blitz Identity Provider, version 5.23

To configure the “One‐time secret‐based password (HOTP)” authentication method, you must set:

• maximum allowable deviation during code verification ‐ the number of subsequent codes (for example, if

the user accidentally pressed the button to generate a new password and did not use it during the authen‐

tication process) at which the authentication will be successful. If the user enters the correct code, Blitz

Identity Provider will automatically resynchronize with the device;

• reject for synchronization ‐ if the user repeatedly presses the code generation button on the device and

does not use the code to confirm the login, the device will cease to be synchronized with the server. In

this case, the next time the user logs into Blitz Identity Provider, he or she will be prompted on the login

page to go through the device reconciliation procedure. To do this, the user will enter three confirmation

codes sequentially generated by the device. Blitz Identity Provider will then check whether the code se‐

quence entered by the user is encountered according to the “Reject for synchronization” setting and will

resynchronize with the device if successful;

• total number of attempts ‐ number of attempts to enter the confirmation code, after which this confirma‐

tion method will be blocked;

• blocking time when attempts are exceeded (in minutes).

Time‐based one‐time password log‐in confirmation (TOTP)

Any devices and programs compatible with the RFC6238 “TOTP: Time‐Based One‐Time Password Algorithm”26

standard may be used to verify the second factor of authentication using the Time‐Based One‐Time Password

(TOTP) authentication method. These may include:

• hardware keyfobs (one‐time password generators) based on time;

• mobile apps.

Note: The most well‐known applications for generating TOTP codes are Google Authenticator, Twilio

Authy, FreeOTP Authenticator, Microsoft Authenticator.

In the settings for the authentication method “Time‐based One‐Time Password (TOTP)”, you must specify:

1. Allowable code validation deviation (number of previous / next codes). By default, both values are 1: a
user can enter both the current validation code and the next or previous one (generated in neighboring

time intervals) when logging in. Such a need may arise, for example, to compensate for possible minor

unsynchronization of server time and time on TOTP‐devices of users.

2. Total number of attempts ‐ number of attempts to enter the confirmation code, after which this confirma‐

tion method will be blocked.

3. Blocking time when attempts are exceeded (in minutes).

26 https://tools.ietf.org/html/rfc6238

2.2. Basic configuration 92

https://tools.ietf.org/html/rfc6238

Blitz Identity Provider, version 5.23

4. Customize the display of one‐time password generators, which includes “Attribute with user name” and

“Name of the single sign‐on system”. These settings will be displayed in the mobile app after the user

account is linked.

5. Links to one‐time password generator applications. Links to applications that are recommended to be used

by users should be specified. These links will be offered to the user in the web application User profile.

Binding devices to user accounts

Binding HOTP and TOTP devices via the Admin console differs depending on whether key fob hardware or mobile

apps are used.

Binding of hardware keyfobs

To be able to use hardware HOTP and TOTP devices as authentication tools, the administrator must first load

a file with the device batch descriptions received from the device vendor in the ”Devices” menu of the Admin

Console. The file contains information about the device serial number, initialization vector, and a number of

other settings. Blitz Identity Provider supports uploading of common file formats (specialized XML files, CSV files)

of device description files from different device manufacturers.

2.2. Basic configuration 93

Blitz Identity Provider, version 5.23

To perform a file upload, you must specify a name for the uploaded generators (it can be, for example, the device

name), the data format, and the path to the file with device descriptions. When you click the “Download” button,

Blitz Identity Provider will report how many device records were loaded or discarded (if their description in the

file was incorrect or the device record is already present in the system).

An example of a downloadableAladdin/SafeNet XML format file for HOTP deviceswith the SHA‐1 algorithm

with a minimum set of parameters:

<?xml version="1.0" encoding="utf-8"?>
<Tokens>

<Token serial="SN123">
<Applications>

<Application>
<Seed>7bba106e428231c4d4e78361375d161c2d59b40b</Seed>
<MovingFactor>0</MovingFactor>

</Application>
</Applications>

</Token>
</Tokens>

Explanation of the parameter values in the file:

• serial ‐ serial number of the device.

• Seed is the device key in hexadecimal (hex) format.

Note: If a software one‐time code generator is used to emulate aHOTP device, a Base32 string is usually

entered as a secret in the software generator. In this case, the value from Seed must be converted from

hex to Base32, and the resulting value must be used in the program generator.

• MovingFactor ‐ initial value of the generator (usually 0).

Under ”Devices” you can also search for a device by serial number and see, if and to which account the found

device has been bound.

After loading the file you should:

• go to the account of the user to whom you want to bind the device (menu “Users”, see Binding devices for

2FA with a one‐time password (page 142));

2.2. Basic configuration 94

Blitz Identity Provider, version 5.23

• find the “Time‐based password generator (TOTP)” or “Secret‐based password generator (HOTP)” section;

• select “Another type»;

• enter the serial number of the required device and the current one‐time confirmation code.

Binding a mobile application

To bind a mobile application you must:

• go to the account of the user to whom you want to bind the mobile application (menu “Users”, see Binding

devices for 2FA with a one‐time password (page 142));

• find the section “Time‐based password generator (TOTP)”;

• select «GoogleAuthenticator»;

• edit the name of the mobile application, if necessary;

• using the mobile application, take a picture of the displayed QR code or enter a secret line into the appli‐

cation.

The user can also independently link the mobile application generating TOTP codes in the web application “User

profile”.

2.2. Basic configuration 95

Blitz Identity Provider, version 5.23

Confirmation codes sent in SMS and push notifications

You can use push notifications sent to the mobile app or SMS messages for login confirmation (the second au‐

thentication factor).

To use the confirmation codes, you must:

• configure and enable the authentication method Confirmation via SMS/push. For the method to work

correctly, it is necessary to define:

– length of the confirmation code;

– validation time;

– number of attempts to enter the confirmation code for 1 login;

– total number of attempts (number of code sends and code entry attempts, after which this authenti‐

cation method will be temporarily blocked for the user);

– blocking time when attempts are exceeded (in minutes);

– configure the sending methods:

2.2. Basic configuration 96

Blitz Identity Provider, version 5.23

* send push notification ‐ you should specify an attribute with a cell phone number or other user

ID required by the service, for example, ${phone_number};

* send SMS ‐ specify attribute with user’s cell phone number, for example, ${phone_number};

• configure Blitz Identity Provider connection to the SMS gateway and push notification service (see Notifi‐

cations and sending messages (page 152)).

Attention: If the user does not have a mobile phone number, he will not be able to use method of login

verification by confirmation code sent via SMS.

2.2. Basic configuration 97

Blitz Identity Provider, version 5.23

Confirmation codes sent by email

You can use emailed confirmation codes to confirm the log‐in.

To do this, you must:

• configure and enable this authentication method. The method must be defined for it to work correctly:

– length of the confirmation code;

– validation time;

– number of attempts per log‐in to enter the confirmation code;

– total number of attempts (number of code sends and code entry attempts, after which this authenti‐

cation method will be temporarily blocked for the user);

– blocking time when attempts are exceeded (in minutes);

– configure the sending method: specify the attribute in which the user’s e‐mail address is stored, e.g.

${email};

• configure (page 152) Blitz Identity Provider connection to the SMTP service.

2.2. Basic configuration 98

Blitz Identity Provider, version 5.23

Log‐in confirmation via Duo Mobile

You can use the Duo Mobile app27 (a Cisco company) to confirm the login (the second factor of authentication).

To do this, you need to make adjustments on the Duo Security service side:

• register an account on the Duo website28;

• log in to the administrator panel29 and go to the Applications section;

• click on Protect an Application, among the applications find Auth API. Then click on Protect this Appli‐

cation to get your integration key, secret key and hostname.

Once these operations are complete, you need to make settings in Blitz Identity Provider Admin Console.

• configure the authentication method Duo push‐authentication. You must specify:

– Duo account parameters (host name, integration and secret keys);

– interaction properties:

* user name pattern (set in the substitution string) ‐ this name will be displayed in Duo Mobile as

the account name;

* enrollment code validity time (in seconds) ‐ the time the enrollment code will be valid for QR

code;

– data to be displayed in the application ‐ information displayed to the user in Duo Mobile in the form

of “key: value”. Here you can pass a custom attribute value or some fixed value. You can also specify

the string ${app} as a value ‐ this will display the name of the application the user is logged into;

– links to application ‐ Duo Mobile.

• enable the Duo push‐authentications method in the Authentication section.

27 https://duo.com/product/multi‐factor‐authentication‐mfa/duo‐mobile‐app
28 https://signup.duo.com/
29 https://admin.duosecurity.com/

2.2. Basic configuration 99

https://duo.com/product/multi-factor-authentication-mfa/duo-mobile-app
https://signup.duo.com/
https://admin.duosecurity.com/

Blitz Identity Provider, version 5.23

You can bind the Duo Mobile app to your user account in the following ways:

• by the user independently through the web application User profile;

• by an administrator through the Admin console.

In the web application User profile the user should go to the section Security / Login Confirmation and perform

the following steps:

1. Select the login confirmation method ‐ Confirmation via mobile application Duo Mobile.

2. Install the Duo Mobile app on your smartphone and scan the QR code and press Confirm.

2.2. Basic configuration 100

Blitz Identity Provider, version 5.23

3. After verification, this authentication method will be added to the user.

In the admin console, the administrator must:

1. Find the user required.

2. Go to the Application Duo Mobile (QR Code) box and click on the Link Duo Mobile button.

3. Ask user to scan the QR‐code with the Duo Mobile application.

The pictures show an example of the login page appearance when confirming entry using push‐notification in the

Duo Mobile application.

2.2. Basic configuration 101

Blitz Identity Provider, version 5.23

Re‐confirmation when logging in from known device

Blitz Identity Provider remembers the devices on which a user has confirmed login during the login process using

one of the login confirmation methods supported by Blitz Identity Provider.

You can configure the login procedure to display a screen asking if the user trusts the browser after a success‐

ful login confirmation, so that repeated logins from this device and browser do not prompt the user for login

confirmation.

If the user logs in again from a trusted browser, the user will not be asked for login confirmation if

bdg‐primary:Input from a known device authentication method is enabled in the bdg‐primary:Authentication

menu in the bdg‐primary:Second factor block.

Confirmation by answering security question

Blitz Identity Provider allows you to request the user to enter the answer to the security question to confirm the

login. This can be useful in confirmation scenarios when recovering a forgotten password. To use this authenti‐

cation method, follow the steps described below.

Step 1. Add method to blitz.conf

In order for the authentication method Confirmation by the answer to the security question to appear in authen‐

tication methods on the tab Second factor, follow these steps:

1. Open the /usr/share/identityblitz/blitz-config/blitz.conf file.

sudo vim /usr/share/identityblitz/blitz-config/blitz.conf

2. In the settings section blitz.prod.local.idp.login.factors in the second list, add a block of

settings using the secQsnmethod:

"login" : {
"factors" : [

[
…

],
[

{
"enabled" : false,
"method" : "secQsn"

},
…

]
],
…

}

3. Restart the services.

2.2. Basic configuration 102

Blitz Identity Provider, version 5.23

sudo systemctl restart blitz-idp blitz-console blitz-recovery

Step 2. Create directory of security questions

To create a directory of security questions, follow these steps:

1. Create the directory /etc/blitz-config/custom_messages/dics on the server.

2. Create a file /etc/blitz-config/custom_messages/dics/securityQuestions with the

contents of the checklist. Example of a securityQuestions file with a directory of security questions:

01=What is your mother's maiden name?
02=What is your grandmother's maiden name?
03=What was the first movie you saw in the cinema?
04=What is your favorite literary work?
05=What was the name of your third grade teacher
06=The first dish you learned to cook
07=What was the name of your first pet
08=What did you want to become as a child?
09=What was the name of the first school you went to?
10=What was the name of the first street where you lived as a child?

Attention: The number in the checklist is used for sorting when displaying a list of security questions

to the user.

3. Check the owner of the dics directory and the directory files in it. The owner must be blitz:blitz.

chown -R blitz:blitz /etc/blitz-config/custom_messages/dics

4. In the configuration file /usr/share/identityblitz/blitz-config/blitz.conf, add

the“dics“ block to the blitz.prod.local.idp.messages block. In the names setting, specify the

name of the securityQuestions directory. For example:

"dics" : {
"dir" : "custom_messages/dics",
"names" : [

"securityQuestions"
]

}

Step 3. Configure method in console

The following settings must be set in the Admin console:

• Total number of attempts – the number of attempts to enter the answer to the security question,

after which this confirmation method will be blocked.

• Blocking time when attempts are exceeded (in minutes).

The list configured (page 103) of security questions is also displayed in the admin console.

2.2. Basic configuration 103

Blitz Identity Provider, version 5.23

Confirmation by incoming call

Blitz Identity Provider allows you to transfer one‐time codes to implement the second authentication factor in the

incoming call number (Flash Call method). In this case, after successful initial authentication, a call will be made

to the user’s number from a previously unknown phone number, the last digits of which will need to be entered

to confirm login. The call is made with the user’s permission.

To configure the Flash Call method, follow the steps described below.

Step 1. Add the method to blitz.conf

In order for the authentication method Confirmation by Incoming call to appear in authentication methods on

the tab Second factor, follow these steps:

1. Open the /usr/share/identityblitz/blitz-config/blitz.conf file.

sudo vim /usr/share/identityblitz/blitz-config/blitz.conf

2. In the settings section blitz.prod.local.idp.login.factors in the second list, add a block of

settings using the flashCallmethod:

"login" : {
"factors" : [

[
…

],
[

{
"enabled" : false,
"method" : "flashCall"

},
…

]
],

(continues on next page)

2.2. Basic configuration 104

Blitz Identity Provider, version 5.23

(continued from previous page)

…
}

3. Restart the services.

sudo systemctl restart blitz-idp blitz-console blitz-recovery

Step 2. Configure the method in the console

In the Admin Console, follow these steps:

1. On the tab Confirmation by a Phone Call set the following settings:

• Code length: The number of last digits of the incoming call number to be used as a code on the

second authentication factor.

• Validity period: The number of seconds after which the confirmation code ceases to be valid

and a second call is required.

• Number of attempts per login: the number of failed attempts to enter the confirmation

code during one login attempt. If the number of attempts is exceeded, a second call is required.

• Total number of attempts: the total number of confirmation codes sent and attempts to

enter a confirmation code, after which this authentication method will be temporarily blocked.

• Blocking time when the total number of attempts is exceeded, in
minutes: during the specified time, this authentication method will be unavailable to the user.

• Name of the attribute with the user's mobile number: Select from the list the

attribute that stores the user’s phone number for making a call.

2.2. Basic configuration 105

Blitz Identity Provider, version 5.23

Click Save. As a result, the configuration of the method will be updated and the tab Phone Call Provider

Driver will be displayed.

2.2. Basic configuration 106

Blitz Identity Provider, version 5.23

2. On the tab Phone Call Provider Driver set a Java procedure for integration with the REST service of the

provider providing the dialer service, similar to the example below. To write the procedure, use the

provider’s documentation and the settings received during registration in the provider’s service.

Listing 5: Example of a procedure for integration with a Flash Call

provider

package flashcall;

import org.slf4j.LoggerFactory;
import org.slf4j.Logger;
import com.identityblitz.core.loop.http.HttpLoop;
import com.identityblitz.core.loop.http.HttpLoopRequest;
import com.identityblitz.core.loop.http.HttpLoopResult;
import com.identityblitz.core.loop.*;
import com.identityblitz.core.loop.http.*;
import com.identityblitz.json.JObj;
import java.util.Collections;

public class FlashCallFlow implements HttpLoop {
private final org.slf4j.Logger logger = LoggerFactory.

→˓getLogger("com.identityblitz.idp.flow.dynamic");

@Override
public HttpLoopRequest run(final JsObj obj, final HttpLoopResult␣

→˓result) {
if (result == null) {

final String number = obj.asString("phone_number");
logger.trace("### flash call to = {}", number);
return HttpLoop.callBuilder("POST", "http://

→˓test.flashcall.ru/api/v1")
.withHeader("X-Token", "1234567890")
.withBody(JsObj.empty.addString("id",

→˓"test_project").addString("dst_number", number.substring(number.length() -␣
→˓10)))

.withTimeout(20000)

.build(JsObj.empty);
} else if (result.status() == 200) {

final JsObj body = result.body();
String callerInfo = body.asString("CallerID").

→˓substring(0, body.asString("CallerID").length() - 4) + "****";
return HttpLoop.Ok(JsObj.empty.addString("code", body.

→˓asString("CallerID")).addString("caller_info", callerInfo));
} else if (result.status() == 502) {

return HttpLoop.error("bad_gateway",
Collections.<String, String>

→˓singletonMap("status", "" + result.status()));
} else {
return HttpLoop.error("wrong_http_status",

Collections.<String, String>
→˓singletonMap("status", "" + result.status()));

}
}

}

Tip: Learn more (page 213) about custom errors implementation.

3. Enable themethod Confirmation by Incoming Call in the list ofmethods on the tabAuthentication ‐> Second

factor.

2.2. Basic configuration 107

Blitz Identity Provider, version 5.23

Configuring an external authentication method

Blitz Identity Provider,allows developers to add support for their own authentication method at deployment. To

do this, you need to develop an application that implements the authentication logic and connect this application

to Blitz Identity Provider. In Blitz Identity Provider, the authentication method “External authentication method”

is configured for this purpose. You can implement an external authentication method to work as both a first and

a second authentication factor.

To configure the use of Blitz Identity Provider with an external authentication method:

1. Configure a new “external” first or second factor authentication method by clicking the “Add an external

authentication method” link. Specify the parameters of this authentication method:

• method identifier ‐ a card with the name of the method will be displayed among methods of au‐

thentication, the method with the given identifier will be possible to access from the Authentication

flows;

• URL of the external service;

• assertion names ‐ a list of assertions that an external method can set for the user;

• passed cookies ‐ list of names of cookies that will be thrown when an external method is called;

2.2. Basic configuration 108

Blitz Identity Provider, version 5.23

• sent headers ‐ the list of headers, which will be passed when calling the external method;

• Applicability Determination Service URL ‐ address of the optional method service. If specified, this

URLwill be called before themain service is called to determine the applicability of this authentication

method. If the URL is not specified, the method is assumed to be always applicable;

• cookie security ‐ the name of the cookie in which the session ID from the external method will

be passed.

• passed assertions ‐ list of assertions to be passed to the external method (if the parameter is not

specified, all assertions available in the login session will be passed to the external method);

• additional parameters ‐ specified in JSON format. The specified parameters will be passed to the

external method. This can be useful to be able to configure the settings of the external authentication

method through the Blitz Identity Provider admin console.

• after saving enable method ‐ a checkbox indicating that you should immediately enable the authen‐

tication method after saving the settings.

2. On the side of the external method it is necessary to provide the processing of authentication requests and

check applicability according to the Integration Guide” (page 294) document.

Customizing the Impersonalization Procedure

Blitz Identity Provider allows you to customize the login process so that after the primary account has been au‐

thenticated and identified, the user can be prompted to select one of his secondary accounts for login.

The process of selecting auxiliary accounts is configured on the “Impersonalization” tab. For this purpose, an

impersonation procedure is developed in Java. The text of the impersonation procedure can be saved, and after

successful compilation, the procedure can be enabled using the “Enable/disable procedure” switch.

2.2.3 External identity providers

This section is dedicated to configuring login through external identity providers.

How to set up login via external identity providers

Setting up login via external identity providers has the following steps:

1. Make the settings in the section Identity providers in the Blitz Identity Provider admin console (see the

sections in this section).

2. Perform settings on the Identity Provider side.

3. Enable (page 73) the ability to log in through this identity provider in the section Authentication.

The initial screen of the section Identity Providers shows the configured providers and allows you to select the

required type of identity provider to configure.

2.2. Basic configuration 109

Blitz Identity Provider, version 5.23

Configuring an Identity Provider consists of the following steps:

1. Specifies the vendor ID and vendor name.

2. Specifying the connection settings to the provider (described separately for each of the identity providers).

3. Specifying the settings for linking the account (page 121) of the external identity provider and the Blitz

Identity Provider account. These settings are not provider‐type specific.

International providers

Apple ID

To configure logging in via Apple ID, go to “Apple Developer Account” (note, the companymust have a valid Apple

Developer ID subscription) to the “Certificates, Identifiers & Profiles”30 section, where you perform the following

operations:

1. In the “Certificates, Identifiers & Profiles” window, select the “App IDs” filter in the upper right corner. Use

the “+” button next to “Identifiers” to create a new “App ID”:

• select the App type;

• set “Description”. It will be displayed to the user in the Apple ID login confirmation window;

• in “Bundle ID” set an identifier of the form com.company.login based on the domain used in

Blitz Identity Provider;

• in “Capabilities” check “Sign In with Apple”, click the Edit button next to it, and check that “Enable

as a primary App ID” is selected;

• you will be prompted to complete the configuration ‐ all this is described in the following paragraphs.

For now you should press “Register”.

30 https://developer.apple.com/account/resources/identifiers/list

2.2. Basic configuration 110

https://developer.apple.com/account/resources/identifiers/list

Blitz Identity Provider, version 5.23

2. In the “Certificates, Identifiers & Profiles” window, select the “Services App IDs” filter in the upper right

corner. Use the “+” button next to “Identifiers” to create a new “Services App ID”:

• set “Description”. It will be displayed to the user in the Apple ID login confirmation window;

• set “Identifier”. It is recommended to set it as com.company.login based on the domain used

in Blitz Identity Provider. Later the created Identifier must be entered in Blitz Identity Provider

settings as client_id in the “Service ID” setting;

• press ”Register”;

• select the created “Service ID”. In its settings, check the “ENABLED” checkbox and click “Configure”;

• in the opened window, check that the “Primary App ID” contains the previously created “App ID”;

• in “Domains and Subdomains” list the domains used by Blitz Identity Provider, separated by commas;

• in “Return URLs” list the URLs of the return, separated by commas and specifying https. You must

specify URLs, samples of which Blitz Identity Provider shows in the Apple ID connection settings, for

example:

https://login.company.com/blitz/login/externalIdps/callback/apple/apple_1/false
https://login.company.com/blitz/profile/social/externalIdps/callbackPopup/
→˓apple/apple_1

• confirm the settings by pressing “Confirm”, “Done”, “Continue”, “Save” in successive screens;

3. In the “Keys”menu, create a key for “Sign In with Apple”. This can only be done once, so it is recommended

to save the created key somewhere. In Blitz Identity Provider this key is not currently used and will not be

needed, but it should be created and saved for the future.

2.2. Basic configuration 111

Blitz Identity Provider, version 5.23

2.2. Basic configuration 112

Blitz Identity Provider, version 5.23

2.2. Basic configuration 113

Blitz Identity Provider, version 5.23

Once you have completed the settings in the Apple Developer Account, you need to:

1. Go to the Blitz Identity Provider Admin console and add a provider that is of Apple type.

2. Fill in the Identity Provider settings:

• Provider identifier;

• Provider name;

• The client identifier (Service ID) obtained in the Apple Developer Account.

3. Customize binding rules.

4. In the ”Authentication” section of the Management Console, enable the use of the Apple Identity Provider

authentication method.

2.2. Basic configuration 114

Blitz Identity Provider, version 5.23

Google

To configure a Google login, you need to follow the steps below:

1. Go to Google API Manager31, in which you perform the following operations:

• go to “Credentials”;

• create a project and create new credentials of the “OAuth Client ID” type;

• type of new client identifier (e.g., web application) and give it a name;

• do not set any restrictions, they will be specified later;

• Googlewill generate the client ID and secret, it will be needed later in the Blitz Identity Provider admin

console.

• in “Allowed redirect URIs” list the URL return comma separated with https. Youmust specify URLs,
samples of which Blitz Identity Provider shows in the Google connection settings, e.g.:

https://login.company.com/blitz/login/externalIdps/callback/google/google_1/
→˓false
https://login.company.com/blitz/profile/social/externalIdps/callbackPopup/
→˓google/google_1

2. Go to the Blitz Identity Provider Admin console and add a provider that is of Google type.

31 https://console.developers.google.com

2.2. Basic configuration 115

https://console.developers.google.com

Blitz Identity Provider, version 5.23

3. Fill in the Identity Provider settings:

• Provider identifier;

• Provider name;

• The client identifier (Client ID) obtained from Google API Manager;

• The client secret (Client secret) obtained from Google API Manager;

• URL for authorization;

• URL for getting and updating the access token;

Note: If user access tokens are to be saved to the database, check Remember tokens. As a
result, the tokens will be saved in the following cases:

– when a user logs in;

– when binding an external provider to User profile;

– when binding an external provider via REST API v2;

– when registering a user via an external provider;

• URL for getting user data;

• Requested scopes (scope) provided in Google32.

4. Customize binding rules.

5. In the ”Authentication” section of theManagement Console, enable the use of the Google Identity Provider

authentication method.

32 https://developers.google.com/+/web/api/rest/oauth#authorization‐scopes

2.2. Basic configuration 116

https://developers.google.com/+/web/api/rest/oauth#authorization-scopes

Blitz Identity Provider, version 5.23

FacebookPage 117, 1

To configure login via Facebook you need to follow the steps below:

1. Go to the Facebook for developers console33 , in which you make the following settings:

• add a new application by specifying its name, e‐mail address for communication, and application

category;

• create an application identifier;

• go to the application settings, section “General”. In this section, specify the “Application domains”

parameter (the parameter must correspond to the domain where Blitz Identity Provider) is installed)

and add a site with a similar URL.

• go to “Verify Application” and activate the item “Make Application «…» available to everyone”.

1 Meta is recognized as an extremist organization and is banned in Russia, while the activities of its social networks Facebook and Instagram

are also banned in Russia.
33 https://developers.facebook.com/apps/

2.2. Basic configuration 117

https://developers.facebook.com/apps/

Blitz Identity Provider, version 5.23

2. Go to the Blitz Identity Provider Admin console and add a provider that is of Facebook type.

3. Fill in the Identity Provider settings:

• Provider identifier;

• Provider name;

• The application identifier (App ID) obtained from the Facebook for developers console;

• Application Secret (App Secret) obtained from Facebook’s developer console;

• URL for authorization;

• URL for getting and updating the access token;

Note: If user access tokens are to be saved to the database, check Remember tokens. As a
result, the tokens will be saved in the following cases:

– when a user logs in;

– when binding an external provider to User profile;

– when binding an external provider via REST API v2;

– when registering a user via an external provider;

• URL for getting user data;

• Requested scopes (scope) provided in Facebook34;

• Requested attributes provided by Facebook; it is acceptable to specify only those attributes provided

by the selected permissions.

4. Customize binding rules.

34 https://developers.facebook.com/docs/facebook‐login/permissions/

2.2. Basic configuration 118

https://developers.facebook.com/docs/facebook-login/permissions/

Blitz Identity Provider, version 5.23

5. In the “Authentication” section of the Management Console, enable the use of the Facebook Identity

Provider authentication method.

Login via another Blitz Identity Provider setup

To configure login through an account of another Blitz Identity Provider (for example, one installed in another

organization, hereafter referred to as a trusted Blitz Identity Provider) or other identity provider that supports

OIDC, follow these steps:

1. Open the admin console of the trusted Blitz Identity Provider (or have the administrator of another Blitz

Identity Provider to do so) and perform the following operations:

• go to “Appendices”;

• click on the “Add an application” button;

2.2. Basic configuration 119

Blitz Identity Provider, version 5.23

• specify the application ID, name, and domain of the application;

• save the application and proceed to customizing it;

• select the OAuth 2.0 connection protocol;

• specify a secret (client_secret), or leave the pre‐populated option;

• specify the prefix of the return link, which is the URL of the main Blitz Identity Provider to be logged

in to;

• configure the necessary scopes in the “OAuth 2.0” section.

2. Go to the Blitz Identity Provider admin console and add a provider that is of Blitz Identity Provider type.

3. Fill in the Identity Provider settings:

• Vendor Identifier;

• Vendor Name;

• The External Provider URI is the domain on which the trusted Blitz Identity Provider is installed;

• The identifier (client_id) specified in the trusted Blitz Identity Provider settings;

• The secret (client_secret) specified in the trusted Blitz Identity Provider settings;

• Requested scopes, these scopes must be defined in the OAuth 2.0 section of the trusted Blitz Identity

Provider;

• Identifier ‐ an attribute of the trusted Blitz Identity Provider that will be used as the user ID (ensures

account uniqueness even if the attribute responsible for the username is changed);

4. Customize binding rules.

5. In the ”Authentication” section of the Management Console, enable the use of the authentication method

using Blitz Identity Provider identity provider.

2.2. Basic configuration 120

Blitz Identity Provider, version 5.23

Account linking settings

Each identity provider’s settings include a section called Account linking. You can use the settings in this section

to define:

• rules for linking an external account to an account in Blitz Identity Provider;

• rules for matching attributes of an external account and an account in Blitz Identity Provider.

Two setting modes are provided: basic and advanced.

Linking an external account to an account in Blitz Identity Provider occurs in the following scenarios:

• The first time you log in using an external account, if it is not already linked to any account in Blitz Identity

Provider.

• When binding in the User profile.

2.2. Basic configuration 121

Blitz Identity Provider, version 5.23

Basic configuration

The basic configuration is performed using the Rule Builder. This mode is suitable for typical account linking and

attribute mapping scenarios.

The following settings are provided:

• Allow one identity provider account to be bound to many accounts:

– option selected – Blitz Identity Provider will allow an external account to be linked to multiple

accounts in Blitz Identity Provider. When a user logs in with such an external account, they will be

shown a selection of multiple linked accounts during the login process.

– option not selected – Blitz Identity Provider will not allow an external account to be linked

to Blitz Identity Provider account if that external account is already linked to another Blitz Identity

Provider account.

• Prompt the user to enter login and password for binding if the account
has not been identified:

– option selected – the user will be prompted to identify and authenticate using an alternative

method to bind an external account if the configured rules fail to find an account in Blitz Identity

Provider.

– option not selected ‐ Blitz Identity Provider will not allow logins for users for whom no ac‐

counts could be mapped. If a logon process for external accounts is configured, the logon process will

automatically start.

• Enable user registration:

– option selected – the password entry form features a link that can be used to register in an

external provider.

– option not selected – proceeding to external provider registration in the password entry form
is not possible.

• Only one account must be found for linking according to the specified
matching rules:

– option selected ‐ if more than one account is found according to the matching rules, an error

message will be displayed to the user.

– option not selected ‐ ifmore than one account is found according to thematching rules, there

will be an option to continue the linking process.

• Require password entry if the account has been identified:

– option selected ‐ the user will need to authenticate to link their account to an external vendor

account.

– option not selected ‐ the account will be automatically linked to an external vendor account.

• Customizing account identity rules ‐ You can create rules to match identity attributes from an exter‐

nal account to identity attributes in Blitz Identity Provider. To create identity rules, you must use

${attr_name} substitution strings, where attr_name is the name of the attribute received from

the external identity provider. You can specify multiple attributes in a single rule. For example, the rule

email=${default_email-} means that the email attribute in Blitz Identity Provider will map to

the default_email attribute of the external account, provided that the default_email attribute is

not empty. Multiple conditions can be specified (using the + add condition link to be met simultaneously

and alternate rules can be added using the + add an alternative rule link).

2.2. Basic configuration 122

Blitz Identity Provider, version 5.23

• Block Attributes with rules for saving attributes. For example, the email=${default_email} rule

means that an attribute named email in Blitz Identity Provider will be populated with the value from the

default_email attribute of the external account (for users who have used that identity provider). If the
attribute has a Master checkbox checked, the attribute will be populated or updated each time the user

logs in through the external Identity Provider. If the Master checkbox is unchecked, it will be populated

only on the first logon that results in a credential bind.

• The User selection block defines the rules for displaying Blitz Identity Provider account found by the con‐

figured matching rules to the user. The Username setting defines the information displayed on the top

line of the user card (the line intended to display the account name). For example, ${family_name-
} ${given_name-} specifies that the user’s last name and first name (if filled in) will be shown on the

top line. The User identifier setting determines the information displayed on the bottom line of

the user card (the line intended to display the account ID). You can use value masking when customizing.

For example, the ${phone_number&maskInMiddle(3,3)} rule will display the middle numbers of

a phone number as *.

2.2. Basic configuration 123

Blitz Identity Provider, version 5.23

• The Linked account block defines the rule of how a user’s linked account is displayed in the user’s external

provider info in the admin console and user profile. The expression is formed based on the data received

when a user logs in through an external provider.

Advanced configuration

In the case of the advanced configuration, the rules for account binding and attribute mapping are defined using

a binding procedure in Java. This mode provides maximum configuration flexibility and is suitable for highly

specialized account binding and attribute mapping scenarios.

2.2. Basic configuration 124

Blitz Identity Provider, version 5.23

See also:

Procedures for binding external user accounts (page 217)

2.2. Basic configuration 125

Blitz Identity Provider, version 5.23

2.2.4 Customizing user services

Blitz Identity Provider provides web applications, with its help users can perform a number of transactions on

their own:

1. Web application User profile. Allows you to perform a number of operations with your account, e.g.

view/change your data, customize authentication methods, view recent events, change your password. If

enabled, it is available at https://{hostname}/blitz/profile.

2. Web application User registration. If enabled, you can switch from the login page to the

self‐registration form (link “Don’t have an account? Register).

3. Web application Access recovery. Allows a user to change his/her account password after passing

the checks. If enabled, users will be able to navigate from the login page (link :bdg‐primary:“Forgot your

password¿) to the Restore Access form.

Configure these services in the Self‐service section of the admin console.

Attention: The administrator of the admin console must personally check if JS‐scripts placed on the login

page are correct and make sure that content of the registration page and user profile is free of vulnerabilities.

General settings

You can enable or disable the corresponding applications (services) on the main page of :bdg‐primary: “Self ser‐

vice” section using the switch (). Please note that the switch only affects the display of links (e.g. Forgot

your password?), while the availability of the service itself depends on whether the corresponding application

has been installed by the administrator:

• blitz-idp – web application User profile,

• blitz-registration – web application User Registration,

• blitz-recovery – web application Access recovery.

The main page also allows you to configure the parameters that apply to all the self‐services:

• confirmation code parameters sent to SMS ‐ you can change the length of the code, its expiry time, and the

number of attempts;

• confirmation code parameters sent by email ‐ you can change the length of the code and its expiry time.

2.2. Basic configuration 126

Blitz Identity Provider, version 5.23

The subsections configure each self‐service individually.

2.2. Basic configuration 127

Blitz Identity Provider, version 5.23

User registration

User registration is a web application that allows a user to create his/her own account. Registration setup
includes configuring the registration form, changing the service parameters and creating a registration procedure

(optional).

Registration form

The list of requested user data is defined by the HTML template. The template is a text file that is compiled using

the Twirl35 templating engine. It is necessary to set functions in the template that allow the user to enter data

about himself when registering.

Examples of functions available in the template:

• @attrInput("email", msg("reg.email"), Map("placeholder" ->
"mail@example.com", "error-messages" -> msg("reg.email.wrong"), "in-
put-type" -> "mail")) ‐ displays on the page a field for entering the email attribute described

in the system. msg("reg.email") is the name of the attribute, which is taken from the message

file according to the current locale. If the input field is empty, it displays "mail@example.com" as a

hint, and if the input is incorrect, it displays msg("reg.email.wrong") from the message file. The

input-type equal to mail is set for the element;

• @attrInput("family_name", "Last name", Map("placeholder" -> "Last
name", "error-messages" -> "Error")) ‐ displays on the page the field for entering

the user’s last name into the family_name variable. This variable can be further used when executing

the registration procedure.

• @securityQuestionInput – displays the input fields of the security question and the answer to the

security question on the page;

• @passwordsInput ‐ displays the password and password confirmation fields on the page;

• @agreement ‐ displays the link to the User agreement;

• @attrExpr ‐ the function, which allows to create a computed attribute (or assign a constant value to the

attribute);

• @submitButton ‐ displays the Register button.

An example of the template for registration:

@attrInput("family_name", "Last name", Map("placeholder" -> "Last name", "error-
→˓messages" -> "Error"))
@attrInput("given_name", "Name", Map("placeholder" -> "Name", "error-messages" ->
→˓"Error"))
@attrInput("phone_number", "Mobile phone number", Map("placeholder" ->
→˓"+7(999)9999999", "error-messages" -> "reg.page.mobile.req.err.msg"))
@attrInput("email", "Email address", Map("placeholder" -> "name@example.com",
→˓"error-messages" -> "reg.page.email.req.err.msg", "input-type" -> "mail"))
@passwordsInput
@agreement
@attrExpr("sub","BIP-${&random(4)}")
@submitButton

Tip: To auto‐generate the GUID of the created accounts, use the following formula @attrExpr:

@attrExpr("sub","${&rUUID()}")

35 https://github.com/playframework/twirl

2.2. Basic configuration 128

https://github.com/playframework/twirl

Blitz Identity Provider, version 5.23

The result of using the specified template in the interface of the web‐application User registration is

presented in figure:

To add a drop‐down list to the registration form to select attribute values from the directory:

1. Create the /etc/blitz-config/custom_messages/dics directory on the /project/ server;

2. Create a /etc/blitz-config/custom_messages/dics/dic_name file with the directory con‐

tents (instead of dic_name, specify the directory name, for example, company_id). Example of com-
pany_id file for the company selection drop‐down directory:

001=Test company 1
002=Test company 2
003=Test company 3

The number in the directory will be written to the attribute value. The row in the directory will be shown to the

user on the registration form.

3. Check the owner of the dics directory and the directory files in it. The owner must be blitz:blitz.

chown -R blitz:blitz /etc/blitz-config/custom_messages/dics

2.2. Basic configuration 129

Blitz Identity Provider, version 5.23

4. In the blitz.conf configuration file, add the dics block to the blitz.prod.local.idp.
messages block. In the names setting, list all directory names (a separate file with directory values must

be created for each directory). For example:

"dics" : {
"dir" : "custom_messages/dics",
"names" : [

"company_id"
]

}

5. Restart the blitz-registration application.

6. In the admin console, in the registration page template, add a line with the attribute filling from the direc‐

tory:

@attrInput("company", msg("Company"), Map("dic" -> "company_id", "dic-default" ->
→˓"0", "sort" -> "key"))

Registration service settings

The settings you can specify:

• store to save the account ‐ select one of the configured storages (section Data sources) for saving the ac‐

count;

• required for registration user attributes ‐ attributes, the presence of which is necessary to complete the

registration procedure. Mandatory user attributes do not need to be included in this list. It is pos‐

sible to add several alternative rules. If the checkbox Использовать условия из процедуры
регистрации is checked, the configured conditions are ignored and the conditions defined by the isE-
nough function from the registration procedure are applied.

• URL of the external enrollment service. If you specify this URL as a parameter, the user will be directed to

this URL when he or she proceeds to the registration process (instead of the Blitz Identity Provider regis‐

tration application).

The screenshot of a fragment of the registration settings page is shown in the figure below:

2.2. Basic configuration 130

Blitz Identity Provider, version 5.23

Registration procedure

Registration procedure ‐ Java code that implements the necessary checks after the user fills in the registration

form. The following actions are possible during execution of the procedure:

• additional verification of the input data;

• conversion of the input data;

• saving attribute values in the storage;

• invoking the external REST services.

If required, convert the data entered by the user and then save them as attributes, in the registration page tem‐

plate you should use function @attrInput instead of @textInput.

Changing the text in the User agreement

A link to the User agreement is located on the user registration page. The User agreement is located in the

assets.zip archive located in the assets directory of the Blitz Identity Provider) installation in the archived

documents\user_agreement directory.

To change the User agreement, unpack the assets.zip archive, replace user_agreement_en.pdf (Rus‐

sian version) and user_agreement_en.pdf (English version) with required files and archive it keeping the

original structure.

It is also possible to change the reference to the User agreement. To do this, edit the (page 234) line reg.
page.reg.action.agreement and setPswd.page.agreement. This method is recommended if the

User agreement is placed on an external resource, for example, as a separate web page.

User profile

User profile is a web application in which the user can perform the following actions:

• view or edit their account data;

• view recent security events (e.g. login events);

• change password;

• view and configure the methods of login confirmation (two‐factor authentication);

• view and configure the security keys;

• view bound social networking accounts; bind new external accounts; unbind unnecessary accounts;

• view the bound access devices, and unbind unnecessary devices;

• view and revoke data access permissions issued by applications;

• view security events.

Configuration of User profile includes configuring the way user attributes are displayed and change additional

parameters.

2.2. Basic configuration 131

Blitz Identity Provider, version 5.23

Displaying user attributes

The main page of myAlpari displays a block with account data. An example of this block is shown in the figure

below.

The display of user data is defined by an HTML template. The template is a text file that is compiled using the

Twirl36 templating engine. In the template it is necessary to place functions that allow the user to enter and edit

data about himself/herself in the User profile.

The following functions are available in the template:

• @show(attrName) ‐ displays the attribute value;

• @showStrings(attrName, values) ‐ displays the array value;

• @editAsText(attrName, readableName, errorMsg) ‐ displays the value of the attribute and
allows you to edit it (the errorMsg parameter is optional);

• @editAsBoolean(attrName, readableName) ‐ displays the value of the logical type (true/false)

of the attribute and allows you to edit it;

• @editAsStrings(attrName, readableName, values) ‐ displays the value (array) of the at‐

tribute and allows you to edit it.

These functions use the following parameters:

• attrName – is the name of the attribute defined in the Data sources section;

• readableName ‐ the name of the attribute, displayed to the user in the message (can be specified as

attribute’s identifier from a message file or as a text);

• values ‐ values, in format key - description, where key is array value, the description ‐ the read‐
able value of the key (for example, ListMap("a" -> "value a", "c" -> "value c")), can
be set as an identifier from the message file or as a text;

• errorMsg ‐ error description, which is displayed in case of erroneous value input (can be set as an iden‐

tifier from a message file or as text). About message files see. Web interface texts (page 234). It is recom‐

mended to use message files if you need to support multilingualism.

Example of functions:

36 https://github.com/playframework/twirl

2.2. Basic configuration 132

https://github.com/playframework/twirl

Blitz Identity Provider, version 5.23

Listing 6: Email attribute display

@editAsText("email", "Email")

Listing 7: Displaying the phone_number attribute with the ability to edit

it

@editAsText("phone_number", "Mobile phone", "Error")

Listing 8: Displaying the boolean info attribute with the ability to edit it

@editAsBoolean("info", "Subscription")

Listing 9: Display an array of strings massiv with the ability to edit it (se‐

lection of values)

@editAsStrings("massiv", "Subscriptions", ListMap("a" -> "Promotions and bonus␣
→˓programs", "b" -> "Company news", "c" -> "Monthly event digest"))

An example of displaying an array of strings in the interface of the User profile web application is shown in

the figure:

Additional parameters

The following parameters can be set as additional:

• welcome template ‐ information that is displayed in the upper right corner of myAlpari. It is allowed to

use substitution strings. For example, ${family_name} ${given_name} will allow to display the

surname and first name of the user;

• URL to follow after a successful logout from User profile;

• period of audit events displayed to users (in calendar months from the current date);

• template for displaying geodata in events (see Geodatabase (page 261)). The template can be composed

of the following elements containing country, region, city and coordinate information: ${ip_ctr},
${ip_st}, ${ip_ct}, ${ip_lng}, ${ip_lat}, ${ip_rad}

• functions available to users, i.e. functions that can be activated by the user from the User profile. It is

possible to enable or disable the following functions:

– password change;

– setting up a security question;

– security key management;

– view and binding of social networks;

– view of access devices;

– view and revoke permissions;

– view events;

– HOTP generators binding;

– TOTP generators binding;

2.2. Basic configuration 133

Blitz Identity Provider, version 5.23

– configuring login confirmation by SMS code;

– configuring push authentication;

– security key binding.

Access recovery

Console settings

Permissible attributes for search setting of the access recovery service defines the attributes by

which the account will be searched.

With the Attributes for verification setting, you can define which attribute values the user must

additionally enter during the password recovery process to validate account ownership. Adding such verification

complicates the password reset attack viamultiple brute force in the Forgot Password Recovery form. On themain

page, the user will be prompted for attributes to match (e.g. last name) and recovery will only be performed if

the account found has an identical attribute value.

The Verify that there are users who have permission to change password in
the found account option specifies that if the found user has a related (“parental”) account authorized to

change the password for this user, a warning will be displayed when attempting to recover the password.

2.2. Basic configuration 134

Blitz Identity Provider, version 5.23

Possible recovery access contacts setting defines attributeswith contacts (email addresses and/or

mobile phone numbers) that will be used to restore access. Attributes with contacts should be defined in the

Data sources section as an email address and a mobile phone number.

Using the settings Total attempts‘ and Blocking time when attempts are exceeded, in min.
you can limit the number of attempts to request sending and unsuccessful entry of confirmation codes sent by

email and SMS for the account, if exceeded, the account will be temporarily restricted from password recovery.

Need for additional verification setting determines in which cases additional authentication

should be performed during access recovery. Possible setting values:

• Not required – no additional authentication required;

• According to user settings in Profile – additional authentication is required if the user

has enabled two‐factor authentication for his account;

• Always required – additional authentication is always required;

• Required if available – additional authentication is required if at least one of the methods spec‐

ified in the List of methods setting is available for a user.

If additional authentication is required, then in the setting List of methods you can select the available

authentication methods to confirm the recovery of access: confirmation of the code received by e‐mail, SMS,

using the code generated by the TOTP application, using the answer to the security question.

The Drop inactivity lock after restoring access setting specifies that password recovery is

allowed for accounts locked out due to long‐term inactivity, and that the long‐term inactivity lockout should be

canceled after password replacement as a result of successful recovery.

2.2. Basic configuration 135

Blitz Identity Provider, version 5.23

Form texts

After defining the set of verification attributes (page 134), you must specify the corresponding texts in the access

recovery form. To do this, use the standard algorithm (page 234). Add texts for the following lines:

• recovery.page.verify.<attribute name>.label: name of the field for entering the at‐

tribute value;

• recovery.page.verify.<attribute_name>.placeholder: text inside the field for entering
the attribute value.

Listing 10: Example of setting texts for the phone_number and fam‐

ily_name attributes

recovery.page.verify.phone_number.label=Mobile phone number
recovery.page.verify.phone_number.placeholder=Enter your phone number
recovery.page.verify.family_name.placeholder=Last name
recovery.page.verify.family_name.placeholder=Enter your last name

2.2. Basic configuration 136

Blitz Identity Provider, version 5.23

2.2.5 User administration

This section is devoted to user administration in Blitz Identity Provider.

User account management

In the section Users of the admin console Blitz Identity Provider administrator can perform the following oper‐

ations:

• search for user accounts (page 138);

• add a user account (page 139);

• view and edit user account attributes (page 141);

• reset user sessions (page 141);

• change the password of the user account (page 142);

• view and unlink accounts of external identity providers (page 142);

• link devices for two‐factor authentication (page 142);

• view the groups in which the user is included, manage the user’s membership in groups (page 144);

• view, link, delete user security keys (page 148);

• view user account rights, assign and revoke rights (page 145);

• view permissions granted by the user to applications (page 148);

• view and delete stored devices (page 147);

• delete the user account.

The general view of the User Data Management page is shown in the figure below.

2.2. Basic configuration 137

Blitz Identity Provider, version 5.23

User search

To search for users, enter the user ID and click the “Search” button. The attribute is used as the displayed identifier,

defined in the “Data sources” section as the base identifier, as well as attributes marked as search attributes.

The list of users found contains:

• identifier of the found user;

• store where user was found;

• user name, configured in the “Data sources” section.

Clicking on any of the found accounts opens the information details of the user.

Also available:

• when you click link copy button, the link to the found user will be copied to the clipboard;

• the link “Security events” allows you to quickly view security events for the current day, in which the found

user appears as an access object.

2.2. Basic configuration 138

Blitz Identity Provider, version 5.23

Adding a user

To add a new account, click on the “Create a user account…”. In the opened window:

• specify the store where user data should be saved;

• set all required attributes;

• click on the “Create” button.

Important: During account creation, you should consider the datastore configurations and restrictions. For

example, if the record is saved to an LDAP directory, all mandatory attributes must be filled in, attribute unique‐

ness restrictions must not be violated, etc. From the Blitz Identity Provider point of view, only the identifier and

mandatory attributes are mandatory (the corresponding attributes are marked with an asterisk (*)).

View and edit user attributes

To display information on any found user, click on the identifier of the user. It contains the attribute values that

were defined in the section “Data sources”, as well as linked accounts of external identity providers, user devices,

security keys, etc.

2.2. Basic configuration 139

Blitz Identity Provider, version 5.23

You can perform the following operations in the user card:

• edit user attributes;

• reset user sessions;

• change the password;

• view the list of bound accounts of external authentication providers, unbind external accounts;

• change the required authentication level for the user;

• bind or remove authentication devices: one‐time password generators and mobile apps to receive push

notifications;

2.2. Basic configuration 140

Blitz Identity Provider, version 5.23

• view the groups the user is included in;

• view the user’s rights and the rights that are available for that user;

• view and delete saved user’s devices and browsers;

• view, add, and delete user security keys;

• view and delete scopes granted to applications.

Editing attributes

Administrators can change any attribute of the user when viewing the card of the selected user account. Note,

when editing an account, be aware of the datastore configurations and restrictions to which the record is being

written.

Note that changing data via the attribute editing interface disregards the rules used in the user self‐registration

process. For example, changing the e‐mail address or cell phone number does not require confirmation.

Resetting sessions

To reset user sessions, use the button Reset sessions in the block Resetting user sessions.

When resetting user sessions, the following actions are performed:

• security tokens issued to applications by the user (access tokens, update tokens, identification tokens) be‐

come invalid – when calling the introspection service with such tokens in Blitz Identity Provider, the service

returns that the token is invalid;

• in devices stored for the user, the flags of trusted devices and the storage of long sessions on them are

removed;

• dynamic client_id/client_secret pairs issued for mobile applications linked to the user account

are canceled;

• the SSO sessions stored in the user’s browser become invalid, so that at the next request from the identifi‐

cation applications in Blitz Identity Provider, a new identification and authentication will be requested.

2.2. Basic configuration 141

Blitz Identity Provider, version 5.23

Changing the password

To change the password, use the block Changing the password. You can enter a new password manually, or

generate it – to do this you, need to leave a checkbox Generate a password. The new password will be displayed

in the information block of the successful operation. When changing the password, you can also set a checkbox

Reset sessions, then the user’s sessions will be reset simultaneously with the password change.

When setting a new password manually, take into account the limitations of the password policy of the store

where you are saving the password.

View and unlink external providers

In the block “Linked accounts of external systems”, you can view the list of accounts of external identity providers

(social networks, etc.) linked to the account of the found user. Each linking is characterized by a unique identifier,

where the last part is the internal identifier of the account in the corresponding identity provider. If necessary,

you can remove the link to an external account.

Binding devices for 2FA with a one‐time password

The administrator can bind a two‐factor authentication tool to the selected user account. For example, a hardware

HOTP/TOTP generator can be bound by serial number, or a mobile application that generates TOTP codes can be

bound to the account by QR code.

2.2. Basic configuration 142

Blitz Identity Provider, version 5.23

2.2. Basic configuration 143

Blitz Identity Provider, version 5.23

Binding Duo Mobile

To make authentication via Duo Mobile, it is necessary to bind the mobile application to the user account. The

recommended scenario is that the user binds their mobile app to the user’s account in the “User profile” web

application.

Another way to bind is via the admin console. To do this, it is necessary to find the necessary account in the

“Users” section and the settings block “Duo Mobile application (QR code)”. In this block, click on the “Attach Duo

Mobile” button, then scan the displayed QR code with the Duo Mobile mobile application.

Group Membership Management

If the user is included in groups, this informationwill be displayed in the block “Groupmembership”. The following

data will be displayed for each group:

• group identifier;

• group attribute values.

2.2. Basic configuration 144

Blitz Identity Provider, version 5.23

To exclude a user from a group using the delete button or add a user to another group use the “Add to group”

link. To add a user to a group, you will need to enter the value of the attribute identifying the group, click the

“Search” button, select the appropriate group from the list of found groups, and click the “Add” button.

Viewing, assigning, and revoking rights

If the user has rights to the user from applications or other accounts, this will be displayed in the “Rights of

subjects on user” block. If the user has rights over objects, such as other accounts, this will be displayed in the

*”User object permissions” block.

Each right is characterized by the following parameters:

• object identifier;

• name;

• right.

2.2. Basic configuration 145

Blitz Identity Provider, version 5.23

You can revoke an access right using the delete button next to the access right. You can assign an access right

using the “Assign rights” link. In this case you will have to select the assigned access right from the list, select the

type of subject (user or application) or object (user, group or application), find and select the subject/object.

2.2. Basic configuration 146

Blitz Identity Provider, version 5.23

Memorized devices and browsers

The administrator can view the devices and browsers the user has logged in using their account from. The de‐

scription of devices includes:

• an indication of whether the device has a login session saved and whether the device is trusted. The indi‐

cation is color coded:

– gray ‐ the login session is not saved on the device and the device is not trusted;

– yellow ‐ the login session is not saved on the device, but the device is trusted;

– blue ‐ a login session is saved on the device, but the device is not trusted;

– green ‐ the login session is saved on the device and the device is trusted.

• the name and operating system version of the device, determined from UserAgent;

• the browser name and version defined based on UserAgent;

• the date and time of the last login from this device and browser;

• The IP address of the user thatwas determined the last time the user logged in from this device and browser.

2.2. Basic configuration 147

Blitz Identity Provider, version 5.23

Security keys

The administrator can view the list of security keys (Passkey, WebAuthn, FIDO2, U2F) registered for the user

account. For each security key, the following are listed:

• key name;

• date and time of key registration;

• scope of application (for Passkey and FIDO2 ‐ for login and for login confirmation; for U2F ‐ for login confir‐

mation only);

• date and time of the last use of the key.

The administrator can register a new security key using the “Add key” link. In a typical usage scenario, security

keys are added by the user himself at the moment of login (onboarding) or via the User profile.

The ability for an administrator to add a key can be useful in the following scenarios:

• The administrator personally issues users a hardware FIDO2/U2F key and binds it to the account. Two‐factor

authentication is used to access the company’s applications.

• The administrator needs the ability to log in to the user account for technical support purposes. Resetting

the password from the account will inconvenience the user ‐ instead, a security key can be registered and

used to log in. All actions to register and delete security keys are logged as security events.

Permissions granted to applications

The administrator can view a list of permissions granted by the user to applications.

Each permission is described by:

• identifier of the application;

• list of permissions (scope);

• date when the permissions were granted.

2.2. Basic configuration 148

Blitz Identity Provider, version 5.23

Managing user groups

Enabling the display of groups in blitz.conf

If Blitz Identity Provider is configured to work with user groups, Groups section appears in the admin console.

To enable the ability to viewuser groups, youmust addblitz.prod.local.idp.groups following settings

block:

"groups": {
"profiles": [
{

"type": "mirror",
"id": "orgs",
"groupStore": "389ds",
"attrsMap": {

"name": "displayname",
},
"filter": "objectClass=group"

}
],
"stores": {
"list": [

{
"type": "ldap_based",
"id": "389ds",
"desc": "Группы",
"ldapStore": "389ds",
"baseDN": "ou=external,ou=groups,dc=test",
"searchScope": "SUB",
"idAttrName": "cn",
"membersAttrName": "uniqueMember",
"memberOfAttrName": "memberOf",
"newGroupAttrs": [
{

"attr": "objectclass",
"format": "strings",
"value": "top,groupOfUniqueNames,group"

},
{

"attr": "dn",
"format": "string",
"value": "cn=${id},ou=external,ou=groups,dc=test"

}
]

}
]

}
}

Specifics of settings:

2.2. Basic configuration 149

Blitz Identity Provider, version 5.23

• in profiles.groupStore, stores.list.id, stores.ldapStoremust be the identifier of the

LDAP directory used to store users;

• in profiles.attrsMap and stores.list.idAttrName must contain group attributes (class

groups), e.g. name. Attribute names can be named differently if desired, only LDAP attributes of type

String are supported;

• in stores.list.baseDN you should check (and correct if necessary) the path for storing organi‐

zations in LDAP. If the path is corrected, also adjust the "value": "cn=${id},ou=external,
ou=groups,dc=test" setting accordingly.

Working with groups

In the section Groups you can search for groups by one of the configured attributes, edit groups, create and delete

groups, and manage user membership in groups.

For each group found, its attributes are displayed. In addition, Group Members block displays all users included

in the group. For each user the following is displayed:

• user identifier;

• user name ‐ according to the template defined in the Data sources section (Username on console).

You can edit group attributes, delete a group, add users to a group using the link Add user…, remove a user from

a group, and create new user groups using the link Create a group….

Adding a user to a group:

2.2. Basic configuration 150

Blitz Identity Provider, version 5.23

Access rights management

To maintain a directory of access rights in Blitz Identity Provider, use the “Access rights” section of the admin

console. Access rights can be used to control user access to applications, to control the invocation of protected

REST services by applications, and can be requested and used by applications to control user access to application

functions.

2.2. Basic configuration 151

Blitz Identity Provider, version 5.23

2.2.6 Notifications and sending messages

To configure notification settings and connect to messaging systems, use the ”Communication settings” section

of Blitz Identity Provider admin console. In this section, you can configure notifications and connections to:

• SMS delivery service;

• push notification service;

• SMTP‐server.

To configure notifications on the main page of the section you need to:

• select a channel for recovery (e‐mail, cell phone) and specify an attribute with the value of this contact.

The attribute is specified using a regular expression, for example, ${phone_number} means that the

information will be sent to phone_number;

• select the events for which you want to send notifications. The following events can be notified:

– input from an unknown device;

– password change;

– password change in dependent account;

– password recovery;

– password recovery in the dependent account;

– bind the social network account;

– unbind the social network account;

– configuring two‐factor authentication;

– changing the login confirmation mode;

– obtaining the right to change password in the dependent account;

2.2. Basic configuration 152

Blitz Identity Provider, version 5.23

– granting the right to change password;

– revoking the right to change password in the dependent account;

– revoking the right to change password;

– registration of user account;

– adding a new security key;

– deleting the security key.

Configuring connection to SMS gateway

Blitz Identity Provider.requires the ability to send SMS if the following functions are used:

• authentication based on SMS confirmation code (first and second factor);

• notifications about important security events via SMS;

• changing the mobile phone number via “User Profile”;

• password recovery using the mobile phone as an account proof of ownership;

• confirmation of the mobile phone number during user registration.

The settings are configured in Blitz Identity Provider admin console in ”Communication settings section.

2.2. Basic configuration 153

Blitz Identity Provider, version 5.23

The following settings must be configured:

• type of delivery protocol (GET or POST);

• SMS gateway URL ‐ set in the form of a pattern to form a request to the SMS gateway to initiate sending of

SMS by it. Example of setting for SMS gateway:

https://smsc.ru/sys/send.php?psw=${password}&login=${login}&phones=${mobile}&mes=$
→˓{message}&charset=utf-8

• login and password for access to the SMS gateway. Login and password can be passed as GET request

parameters or as HTTP request header (HTTP Basic authentication scheme);

• HTTP request header to the SMS gateway;

• a template for checking the response from the gateway indicating successful sending. It is specified as a

regular expression;

• a template for checking the response from the gateway indicating an error of sending a message. It is

specified as a regular expression.

2.2. Basic configuration 154

Blitz Identity Provider, version 5.23

Connection to the service of sending push notifications

Push notification settings are configured in the Admin console web application in the “Messages” section.

The following settings must be configured:

• type of delivery protocol (GET or POST);

• URL of the push notification service, for example:

http://api.system.ru/json/v1.0/communication/mobile/push

• data ‐ a message passed in the body (body) of the request, for example:

{"token":"${password}","title":"${title}","body":"${message}","msisdn":$
→˓{subscriberId}}

• login and password to access the service. Login and password can be passed as GET request parameters or

as HTTP request header (HTTP Basic authentication scheme);

• HTTP request header;

• a template for checking the response from the service, indicating successful sending. It is specified as a

regular expression, for example:

.+\"errorCode\":0.+

• a template for checking the response from the service that indicates an error in sending a message. It is

specified as a regular expression, for example:

.+\"errorCode\":[1-9].+

An example of setting up integration with a push notification service is shown in the figure below.

2.2. Basic configuration 155

Blitz Identity Provider, version 5.23

Configuring the connection to the SMTP gateway

In Blitz Identity Provider, youmust configure the ability to send email messages if the following features are used:

• Notification of important security events by email;

• changing your electronic signature email address via your “User Profile”;

• recovering a forgotten password using email as a channel to confirm account ownership;

• confirmation of the e‐mail address when registering a user account.

The settings are configured in Blitz Identity Provider admin console in ”Communication settings section.

2.2. Basic configuration 156

Blitz Identity Provider, version 5.23

The following settings must be configured:

• SMTP gateway host name;

• SMTP gateway host port;

• whether or not it is necessary to use TLS for a secure connection to the gateway;

• sender’s email address;

• account name at the SMTP gateway on behalf of which Blitz Identity Provider will send the email (if the

account name is the same as the sender’s email, then check the appropriate checkbox);

• password for the SMTP gateway account on behalf of which Blitz Identity Provider will send email;

• settings ‐ additional configuration parameters of interaction with SMTP gateway37.

2.3 Access to applications and network services

2.3.1 Registering applications in Blitz Identity Provider

About applications

Application registration in Blitz Identity Provider is required so that applications can use the services provided by

Blitz Identity Provider:

• request user identification and authentication;

• invoke the Blitz Identity Provider REST services.

Applications are managed in the section Applications of the Admin Console.

37 https://javaee.github.io/javamail/docs/api/com/sun/mail/smtp/package‐summary.html

2.3. Access to applications and network services 157

https://javaee.github.io/javamail/docs/api/com/sun/mail/smtp/package-summary.html

Blitz Identity Provider, version 5.23

Creating a new application account

To connect a new web application, go to the Applications section of the console and select Add application. This

action will launch the new application connection wizard, which includes the following steps:

Step 1. Basic settings

It is required to specify the identifier of the application to be connected (when connecting via SAML protocol, the

identifier corresponds to entityID, when connecting via OAuth 2.0 ‐ client_id), its name and domain, i.e.

the URL where this application is available.

Important: When specifying the identifier for OAuth 2.0 it is not allowed to use colon and tilde.

The name of the application is then used by Blitz Identity Provider to display on the login page when the applica‐

tion initiates a request for user identification.

The application domain is used when a user needs to be redirected to the application from Blitz Identity Provider

web pages. The redirection is done to the specified domain or to a specialized redirect_uri passed in the in‐

teraction with Blitz Identity Provider, but it is verified that redirect_uri corresponds to the domain specified

in the application configuration.

2.3. Access to applications and network services 158

Blitz Identity Provider, version 5.23

Step 2. Specify the application start page and select the login page template

In the “Application home page” field it is recommended to specify the application login link that initiates the

identification and authentication request.

In the Page Template list, you must select which template should be used to display the login page when a

user attempts to access this application. Instructions for creating a new template can be found here (page 221).

If necessary, you can specify the identifier encryption key (privacy domain). Creating a privacy domain en‐

sures the uniqueness of the user identifier received by the application as a result of authentication, i.e. this

identifier will be unique, but specific to this application. In other words, if a request for user data is initiated by

an application from a different privacy domain, it will receive a different value of the user ID. Clicking on the field

will display the previously configured encryption keys, with the option to set a new one. Applications that share

a common encryption key will receive an identical User ID.

At this step, you can also set tags to further use them when customizing the application logic, e.g. to analyze

them in a login procedure (page 214).

2.3. Access to applications and network services 159

Blitz Identity Provider, version 5.23

Step 3. Configure application access rules

You can configure the rules that Blitz Identity Provider uses to decide whether or not to allow a user into an

application.

Access control rules can be added using the configurator or manually using RQL expressions (see figures below).

In the rules it is possible to check that the user is included in the required user group (setting Groups in the

configurator or rule contains(grps,GRP1,GRP2,...)), has the required access right (setting Author-
ity in the configurator or rule contains(rights.its.SYSTEM,RIGHT_1,RIGHT2,...)) or has the
specified attribute value (setting Approval in the configurator or expression with attribute).

2.3. Access to applications and network services 160

Blitz Identity Provider, version 5.23

Step 4. Connectivity protocols settings

You must configure one or more protocols for connecting the application to Blitz Identity Provider.

The following connectivity protocols are supported:

• SAML ‐ for connecting applications via SAML 1.0, 1.1, 2.0, and WS‐Federation for user identification and

authentication.

• OAuth 2.0 ‐ for connecting applications via OAuth 2.0, OpenID Connect 1.0 (OIDC) for user identification

and authentication. Dynamic client registration can be configured within this protocol.

• Simple ‐ for connectingweb applications to perform identification and authentication by substituting a login

and password from a proxy server into the application, if the application does not support SAML/OIDC

connectivity.

• REST – connecting applications that use the REST services of Blitz Identity Provider for account registration/

modification, user authentication device management.

• RADIUS – to connect to network services using the RADIUS protocol.

If an organization plans to develop or modify its own applications to connect them to Blitz Identity Provider,

developers should review Integration Guide (page 294).

If an organization plans to connect applications that have native support for SAML 1.0, SAML 1.1, SAML 2.0,

WS‐Federation, or OIDC (OpenID Connect 1.0, OAuth 2.0) connectivity to Blitz Identity Provider, the follow‐

ing subsections describe the general settings on the Blitz Identity Provider side of connecting an arbitrary

SAML/OIDC‐enabled application.

2.3. Access to applications and network services 161

Blitz Identity Provider, version 5.23

2.3.2 Operation schemes of SSO technologies

This section provides operation schemes of common single sign‐on technologies such as OAuth 2.0 and SAML.

Connecting a web app via OIDC

The interaction of the web application with Blitz Identity Provider by OIDC includes the following steps:

Note: This process coincides with the Authorization Code Grant application authorization model provided

for in the OAuth 2.0 specification.

1. The application sends a request for user identification and authentication via a web browser to the Blitz

Identity Provider address.

2. Blitz Identity Provider identifies/authenticates the user.

3. Blitz Identity Provider receives the user’s consent to transfer information about him to the application (for

applications hosted on the domain company.com, consent is provided automatically without the user’s

request).

4. Blitz Identity Provider redirects the user back to the application via the web browser and transmits the

authorization code to the application.

5. The application uses the authorization code to generate a request for an identification token, an update

token, and an access token.

6. The application receives a response containing the necessary tokens.

7. The application requests user data using an access token. If necessary, the application can verify the iden‐

tification token and extract the user ID and additional attributes from this token.

The figures show the processes of obtaining an authorization code, tokens, and user data.

Getting the authorization code:

2.3. Access to applications and network services 162

Blitz Identity Provider, version 5.23

Getting security tokens:

2.3. Access to applications and network services 163

Blitz Identity Provider, version 5.23

Getting user data:

Connecting a mobile app via OIDC

The interaction of the mobile application with Blitz Identity Provider in addition to the standard tools of the

OIDC/OAuth 2.0 protocol uses the specifications:

• RFC 7591 OAuth 2.0 Dynamic Client Registration Protocol38,

• RFC 7592 OAuth 2.0 Dynamic Client Registration Management Protocol39.

The interaction of the mobile application with Blitz Identity Provider includes the following steps:

1. Dynamic registration of a mobile application instance in Blitz Identity Provider. Getting an application in‐

stance from Blitz Identity Provider a unique client_id / client_secret pair.

2. The user’s initial login to the mobile application using Blitz Identity Provider. The user sets a PIN code or

Touch ID/Face ID. Saving the encrypted client_id / client_secret pair received from Blitz Identity

Provider on the device.

3. Secondary user inputs using a PIN or Touch ID/Face ID. Authorization in Blitz Identity Provider using the

encrypted client_id / client_secret pair.

38 https://tools.ietf.org/html/rfc7591
39 https://tools.ietf.org/html/rfc7592

2.3. Access to applications and network services 164

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7592

Blitz Identity Provider, version 5.23

4. Deleting the received client_id / client_secret pair in Blitz Identity Provider during the user’s

logout (account change, account logout) from the mobile application.

Schematically, the sequence of actions of stages 1‐2 is shown in the first figure, and stage 3 is shown in the second.

The user’s first login to the mobile application:

2.3. Access to applications and network services 165

Blitz Identity Provider, version 5.23

Repeated user logins to the mobile application:

Connecting an app via SAML

During the interaction, the application (service provider) sends a SAML request to Blitz Identity Provider for user

identification (SAML Request). The request is an XML document designed in accordance with the SAML standard.

The request contains the identifier of the application requesting identification, called the entityID, as well
as additional service information. The request itself is transmitted electronically signed by the application. The

HTTPS protocol is used as the transport protocol for transmitting a message, and the identification provider is

called via HTTP Redirect. This means that the request from the application to Blitz Identity Provider is made

indirectly, through the user’s browser, and direct network interaction between the application and Blitz Identity

Provider is not required when using SAML.

After receiving a SAML identification request, Blitz Identity Provider identifies the request belonging to a specific

application, after which it displays a single sign‐on web page to the user to identify and authenticate the user. In

case of successful identification and authentication of the user, Blitz Identity Provider transmits a SAML Response

to the application (service provider). Depending on the set interaction settings, the request can be signed and

encrypted. XML Signature and XML Encryption standards are used for signature generation and encryption. The

HTTPS protocol is used as a transport protocol for transmitting a message with identification results, and the

service provider is called via HTTP POST.

After receiving a SAML response from Blitz Identity Provider, the application verifies its signature, performs de‐

cryption, and then extracts user identification data (identifiers, attributes, permissions) from SAML statements.

The process of interaction between the application and Blitz Identity Provider using SAML is shown in the figure.

2.3. Access to applications and network services 166

Blitz Identity Provider, version 5.23

User identification using SAML

2.3.3 Configuring SAML and WS‐Federation

Connection via SAML 1.0/1.1/2.0

When connecting an application via SAML, you must make the following settings:

• load the SAML metadata of the application to be connected (page 169);

• make sure that the SAML Profile switch is set to SAML 2.0 Web SSO Profile;

• in the SAML profile block, click Configure. In the fields that appear, specify:

– specify whether to sign SAML attributes (SAML Assertions) in Blitz Identity Provider responses;

– specify whether to encrypt SAML‐attributes in Blitz Identity Provider responses;

– specify whether to encrypt SAML identifiers (SAML NameIds) in Blitz Identity Provider responses;

– specify whether to include a list of assertions with attributes in Blitz Identity Provider responses;

• specify which SAML user attributes from Blitz Identity Provider to pass to the application. SAML attributes

must be pre‐configured (page 170) in the SAML section of the Admin Console.

2.3. Access to applications and network services 167

Blitz Identity Provider, version 5.23

Connection via WS‐Federation

When connecting an application via WS‐Federation, the following settings must be configured:

• load the SAML metadata of the application to be connected (page 169);

• set the SAML profile switch to WS‐Federation Passive Requestor Profile;

• in the SAML profile block, click Configure. In the fields that appear, specify:

– specify whether to sign assertions (Assertions) in Blitz Identity Provider responses;

– specify the lifetime of assertions in the response. ISO 8601 format should be used to specify the

duration of the period40, e.g. PT5M ‐ 5 minutes;

– specify whether to include a list of assertions with attributes in Blitz Identity Provider responses;

• specify which user attributes from Blitz Identity Provider to pass to the application. Attributes must be

pre‐configured (page 170) in the SAML section of the Admin Console.

40 http://www.ifap.ru/library/gost/86012001.pdf

2.3. Access to applications and network services 168

http://www.ifap.ru/library/gost/86012001.pdf

Blitz Identity Provider, version 5.23

Uploading SAML metadata

You can use either method to upload SAML metadata of an application:

• To upload a ready‐made XML file, click Open file.

• To use the metadata builder, click Generate metadata. Enter the following data:

– The assertion handler service URL (AssertionConsumerService),

– The single logout service URL (SingleLogoutService),

2.3. Access to applications and network services 169

Blitz Identity Provider, version 5.23

– Signature certificate,

– Encryption certificate.

Click Generate. As a result, the metadata file will be automatically generated based on the entered data.

Configuring SAML attribute

The SAML section of the Admin Console is used to register user SAML attributes in Blitz Identity Provider.

To add a new SAML‐attribute you must:

1. Click on the Add a new SAML attribute link.

2. Enter:

• name of the SAML‐attribute (this is what will be displayed when connecting SAML applications);

• attribute source (all attributes defined in the Data sources section are displayed).

3. Press Add. The attribute will be added.

4. Define attribute encoders. This requires:

• click on the link Add encoder;

• choose the type of encoder; it should be noted that the type of encoder depends on the protocol

version the service provider (connected application) works with;

• name of the SAML attribute that will be sent to the service provider (within this encoder type);

• a short name to be given to the service provider (within this encoder type);

• name format.

If necessary, multiple encoders of the selected SAML attribute can be defined (each encoder must belong to a

different encoder type).

2.3. Access to applications and network services 170

Blitz Identity Provider, version 5.23

2.3.4 OAuth 2.0 and OpenID Connect 1.0

Configuring the application

When connecting an application via OAuth 2.0 or OpenID Connect 1.0 (OIDC), you must set the following appli‐

cation interaction settings in Application interaction settings block:

• specify the secret key (or use the default generated key) of the connected application (client_secret)
to be used by the connected application when accessing the Blitz Identity Provider (if not specified, the

client application must be authenticated otherwise, for example, using a TLS proxy);

• specify an additional secret key (client_secret) for the connected application. It is recommended for

cases when it is necessary to provide smooth change of client_secret for this application;

• specify a predefined return link (redirect_uri) ‐ the URL to which the user will be redirected by default
after authorization (redirect_uri);

• specify valid return link prefixes ‐ the prefix is used to validate return links (redirect_uri) passed in

authentication requests from applications. If a return link is specified in an authentication request and it

does not match any of the specified prefixes, authentication will be denied;

• allowable permissions ‐ the permissions (scope) that this application is allowed to request;

Note: You can configure (page 109) Blitz Identity Provider to store user access tokens from ex‐

ternal identity providers. If the application needs to receive (page 385) stored access tokens via

REST API, select the following system permissions for it: fed_tkn_any (all external providers) or

fed_tkn_${fedPointType}_${fedPointName} (external provider with the ${fedPoint-

2.3. Access to applications and network services 171

Blitz Identity Provider, version 5.23

Type} type and ${fedPointName} name). These permissions must be preliminarily set in the gen‐

eral OAuth settings on the OAuth tab.

• default permissions ‐ the permissions (scope) that will be granted to the application by default after au‐

thentication. If not specified, the required permissions must always be explicitly stated in the authentica‐

tion request;

• check the option “Do not require the user to agree to provide access to data about him/herself” if necessary.

If this option is checked, the consent page will not be displayed when the user logs in for the first time;

• check the “Mandatory use of Proof Key for Code Exchange (RFC 7636) for Authorization code grant type”

option, if authentication requests must be validated according to RFC 7636;

• select, if necessary, the authenticationmethodwhen accessing the token service. The specified authentica‐

tion methods must be used when accessing the token service (token endpoint). If empty, all methods

are available;

• select valid grant types if necessary. The parameter specifies the list of grant types that will be

available to the application. If the list is empty, all grant types are available;

• select valid response types if necessary. The parameter specifies the list of response types
that will be available to the application when accessing the authorization URL (authorization end-
point). If the list is empty, all response types are available;

• specify the lifetime of the access token (in seconds). If the parameter is not specified, it is taken from the

general settings in the “OAuth 2.0” section;

• specify the default mode of issuing access tokens. Blitz Identity Provider provides two modes of issuing

access tokens (access_token):

– offline mode ‐ when requesting an access token, a perpetual refresh token (refresh_token) will
also be issued, which can be used to obtain a new access token. It is recommended that an application

use this mode if it needs to retrieve up‐to‐date user data from Blitz Identity Provider outside of the

validity time of the user session. For example, if an application is doing a mailing and wants to get an

up‐to‐date email address from Blitz Identity Provider before sending it.

– online mode ‐ only the access token will be issued. The application is recommended to use this mode

if it is sufficient to receive actual user data at the moment of login (during the active user session).

The mode of issuing access tokens may be explicitly specified in the authentication request; if not specified, the

default mode is used.

• specify the lifetime of the update token (in seconds). If the parameter is not specified, it is taken from the

general settings in the “OAuth 2.0” section;

• specify the assertions to be added to the identity token (id_token). If the application communicates

with Blitz Identity Provider using the OIDC protocol (OpenID Connect 1.0), you must also specify openid
as one of the authorizations (scope). Then in exchange for the authorization code, when calling Token
Endpoint, not only an access token (access token) and a refresh token (refresh token), but also
an identification token (id_token) will be issued. The identity token will include the user identifier sub
aswell as the additional attributes listed in this setting. It is possible to add both the attributes configured in

“Data sources” and additional attributes (see Adding attributes to an identity token (page 177) for details);

• select access token format ‐ you can choose opaque or JWT. If the parameter is not specified, it is taken

from the general settings in the “OAuth 2.0” section.

2.3. Access to applications and network services 172

Blitz Identity Provider, version 5.23

When using the logout41 function in an application, the following settings must be specified in the “Exiting the

application” block:

• specify prefixes of return links on exit. You must list the prefixes of valid URLs of user redirect pages after

the application initiates a logout. You can specify one or more return link prefixes;

• predefined exit return link ‐ the link to which the user will be redirected after logout from the application,

41 https://openid.net/specs/openid‐connect‐rpinitiated‐1_0.html#RPLogout

2.3. Access to applications and network services 173

https://openid.net/specs/openid-connect-rpinitiated-1_0.html#RPLogout

Blitz Identity Provider, version 5.23

if the post_logout_redirect_uri return address was not passed in the parameters of the logout

call from the application;

• check the option “Do not show the logout confirmation screen to the user” ‐ if this setting is not checked,

the user will be shown a screen requesting logout confirmation;

• link to clear user session in browser (Front channel) ‐ the specified application handler address will

be called from browser frame in case of user logout initiation;

• check the option “Add the session ID and issuer to the session cleanup link in the browser (Front channel)” if

necessary ‐ in this case the session identifier (id) will be passed to the browser application logout handler;

• link to the user’s session cleanup in the application (Back channel) ‐ the specified application handler
address will be called from the Blitz Identity Provider server if a user logout is initiated;

• check the option “Add the session ID and issuer to the session cleanup link in the application (Back channel)”

if necessary ‐ in this case logout_token containing user session identifier (sid) will be sent to the

application handler address called from Blitz Identity Provider server in case of user logout initiation.

When an application uses the Device Authorization Grant42 specification (for example, to connect IOT devices,

smart TV, chat bots, voice assistant applications) in the Application interaction settings block in theAcceptable
response type parameter, add thedevice code option, and in theAllowed grant type parameter,

add the urn:ietf:params:oauth:grant-type:device_code option. Also in the Device Authoriza‐

tion Grant block you should set the following settings:

• format of the user’s code, for this you should use regular expressions;

• user code lifetime;

• link to the custom code entry page;

• check the option “Add user code to URLs” if necessary. In this case Blitz Identity Provider will return not

only a link to the user code input page (for example, https://test.ru/device), but also a link with
the code as a parameter (for example, https://test.ru/device?uc=676-267-324).

42 https://tools.ietf.org/html/rfc8628

2.3. Access to applications and network services 174

https://tools.ietf.org/html/rfc8628

Blitz Identity Provider, version 5.23

General OAuth 2.0 settings

The “OAuth 2.0” section of the Management Console is used to specify general OAuth 2.0 settings, as well as to

configure a set of permissions (scope).

In the “OAuth 2.0” section of the Admin Console, you can view the various Blitz Identity Provider handler URLs

associated with OAuth 2.0 and OIDC:

• “URL with Blitz Identity Provider metadata” ‐ this link contains dynamically updated Blitz Identity Provider

settings (metadata) (specification43). Application developers do not need to specify all of the following

URLs in their application configuration, but can use a single link to this metadata in the settings;

• “URL for authorization” is the address of theOAuth 2.0 Authorization Endpoint handler for requests through

the browser for an authorization code;

• “URL to get and refresh a token” ‐ the address of the OAuth 2.0 Token Endpoint handler to retrieve security

tokens (access_token, id_token, refresh_token).

If necessary, you can:

• change the “Access token lifetime” used by default when issuing tokens for all applications;

• specify the “Access token format” used by default when issuing tokens for all applications: string (opaque)
or JWT;

43 https://tools.ietf.org/html/draft‐ietf‐oauth‐discovery‐10

2.3. Access to applications and network services 175

https://tools.ietf.org/html/draft-ietf-oauth-discovery-10

Blitz Identity Provider, version 5.23

• change the “Update marker lifetime” used by default when releasing tokens for all applications;

• check the “Authentication of client systems using Proxy TLS” option. In this case, applications must be

configured to communicate with Blitz Identity Provider via a proxy server and a two‐way TSL connection

must be established. The “Common Name (CN)” field of the system certificate must contain the system

domain of the connected application.

Under “Device Authorization Grant “ you can define the general settings for interaction with applications accord‐

ing to the Device Authorization Grant specification. Here you can specify:

• lifetime of the user’s code (in seconds);

• is theminimumallowed interval for polling the device binding code status in seconds. If the applicationpolls

the Blitz Identity Provider service more often than specified in this parameter, an error will be returned.

If necessary, you can specify different settings related to the Device Authorization Grant specification for each

application.

For correct operation of interaction with applications using the OAuth 2.0 protocol, it is necessary to define per‐

missions (scope). To do this, you need to specify:

• scope name;

• scope description (it will be displayed to the user on the consent page);

• attributes of the user that will be provided under this permission (attributes must be defined in the “Data

sources “ menu);

• whether the scope is system permissions ‐ such permissions are only granted to applications using OAuth

2.0 Client Credentials Flow (not in the context of individual user permissions, but general ones).

2.3. Access to applications and network services 176

Blitz Identity Provider, version 5.23

Attention: For OpenID Connect 1.0 authentication to work correctly, you must ensure that a permission

named openid is defined in this section of the console. You can also specify the attributes to be passed with

this permission. In this case, the attributes are retrieved by using an access token issued for the openid
permission.

Important: You can configure (page 109) Blitz Identity Provider to store user access tokens from external identity

providers. If applications connected over OAuth 2.0 need to receive (page 385) stored access tokens via REST API,

specify the following system permissions in this console settings block: fed_tkn_any (all external providers)

or fed_tkn_${fedPointType}_${fedPointName} (external provider with the ${fedPointType}
type and ${fedPointName} name). These permissions must also be specified in the application‐specific

OAuth settings.

Adding attributes to an identity token

Applications connected using theOpenID Connect 1.0 protocol can receive data in the identity token. The list of at‐

tributes to be passed in the identity tokenmust be specified in the Added to identity token (id_to-
ken) assertions clause of the protocol settings.

In addition to the stored attributes, assertions can be added to the identity token:

• received when the user logs in by electronic signature. This may be data on the electronic signature key

certificate, data on the physical/legal person from the certificate;

• defined in the authentication flow.

To obtain assertions from the electronic signature key certificate, the blitz.conf configuration file must be

edited by adding the following structure to the blitz.prod.local.idp.login.methods.x509 config‐

uration block:

"claims" : [
{

"name" : "attr_name",
"value" : "cert_attr_name"

}
],

In this structure, attr_name is the name of the attribute to be used in the identification token, and

cert_attr_name is the attribute designation in the certificate (examples of available values are given in the

table).

2.3. Access to applications and network services 177

Blitz Identity Provider, version 5.23

Example of data obtained from electronic signature key certificate

Attribute designa‐

tion in certificate

Description

SUBJECT.OGRN OGRN of the organization

SUBJECT.OGRNIP OGRNIP of an individual entrepreneur

SUBJECT.INN TIN of the organization

SUBJECT.E Company email of official

SUBJECT.O Organization name

SUBJECT.ST Organization region

SUBJECT.L Organization location

SUBJECT.STREET Street, house, office number of the organization

SUBJECT.O Division of the official

SUBJECT.T Position of the representative

SUBJECT.<OID> A value from an attribute with the specified OID. For example, SUBJECT.1.2.643.
100.5 allows an attribute with OI D 1.2.643.100.5 to be accessed

An example of the structure added to the configuration file:

"claims" : [
{

"name" : "org_OGRN",
"value" : "SUBJECT.OGRN"

},
{

"name" : "org_INN",
"value" : "SUBJECT.INN"

},
{

"name" : "org_email",
"value" : "SUBJECT.E"

},
{

"name" : "org_name",
"value" : "SUBJECT.O"

}
],

To be able to define session assertions in the login procedure, the corresponding assertions must also be defined

in the configuration file. For this purpose, the blitz.prod.local.idp.login section of the configura‐

tion file must have the sessionClaims attribute added with a list of assertions that can be defined in the

procedure.

For example, the following entry allows you to define the custom_attr attribute:

"sessionClaims" : [
"custom_attr"

]

2.3. Access to applications and network services 178

Blitz Identity Provider, version 5.23

Configuring Dynamic OAuth 2.0 Client Registration

To enable dynamic client registration, you must take the following steps:

• register the application and configure the OAuth 2.0 connection protocol for it according to the documen‐

tation (see General OAuth 2.0 settings (page 175));

• in the OAuth 2.0 settings for this application, click the “Dynamic clients” tab.

Specify the basic settings for dynamic client registration:

• allow dynamic client registration;

• specify the assertions thatmay be directly transferable. These assertionsmay be specified in the application

instance registration request. If they are present in the application metadata (software_statement),
the value from the metadata will be prioritized. It is recommended to allow only the device type

(device_type) to be passed.

Create primary tokens for the application. Primary tokens are used to authorize application instances when they

are registered.

Generate application metadata (software_statement). This metadata is passed as a assertion in the appli‐

cation instance registration request. You can specify as metadata attributes:

• application version (mandatory attribute). The application version must match the version of the primary

token used by the application;

• return link prefixes. The prefix is used to validate return links (redirect_uri). If a return link is specified
in an authentication request and it does not match any of the specified prefixes, authentication will be

denied;

• allowable permissions ‐ the permissions (scope) that will be available to the application;

• authentication method when accessing the token service. The specified authentication method must be

used by the application instance when accessing the token service (token endpoint);

• permissible values of grant type. A list of grant type that will be available to the application in‐

stance;

• permissible values of response type. A list of response type that will be available to the applica‐

tion instance when accessing the authorization URL (authorization endpoint)

Note that the specified metadata attributes must match the OAuth 2.0 parameters defined for the application

(“Static client”).

Once the application metadata is signed, it should be passed along with the primary tokens to the developers of

the plug‐in application.

An example of dynamic client registration settings is shown in the figure below.

2.3. Access to applications and network services 179

Blitz Identity Provider, version 5.23

2.3. Access to applications and network services 180

Blitz Identity Provider, version 5.23

2.3.5 Simple

You can use this method to connect an application to Blitz Identity Provider under the following conditions:

• An application cannot be connected to Blitz Identity Provider using standard SAML or OIDC protocols.

• The application is a web application deployed in its own infrastructure (On‐Premise). User access to appli‐

cations can be organized through a reverse proxy server.

To connect an application to Blitz Identity Provider using the Simple protocol, you must:

1. In the application settings in the Admin Console, select the Simple protocol and set its settings:

• SSL ‐ a setting that specifies whether the proxy calls the application connected by Simple via HTTP or

HTTPS. It is recommended to use an existingweb server of the application as a proxy server protecting

the application, in which case the connection between the proxy server and the application will be

made without TLS/SSL encryption.

• Form selector ‐ specifies a CSS selector to define the position of the login form on the plug‐in appli‐

cation page.

• Login field selector ‐ specifies a CSS selector to define the position of the login field on the login page

of the plug‐in application.

• Default Logout URL (optional setting) ‐ specifies which URL Blitz Identity Provider should call when it

is necessary to initiate a logout in a Simple connected application in the case of a single logout in Blitz

Identity Provider.

• URL to go to after a successful logout ‐ specifieswhichURL Blitz Identity Provider should call to redirect

the user after a successful logout initiated by a Simple connected application.

• JavaScript (optional setting) ‐ JS code embedded in the login page of the Simple plug‐in application,

which allows to process the response received from the application with login results (check that the

login was successful) and show an error about it in Blitz Identity Provider.

Example value:

var fm = document.querySelector('form[name=login]');

if (fm) {
document.body.style.display = "none";
var err = document.getElementById('lost-password');
var errKey = err && err.innerHTML.indexOf('Incorrect password.') !== -1 ?

→˓'incorrect_password' : 'unknown_error';
var kvp = document.location.search.substr(1).split('&');
kvp.push([encodeURI('error'),encodeURI(errKey)].join('='));
window.location.search = kvp.join('&');

}

var aLogout = document.querySelector('#logout');
var href = aLogout ? aLogout.getAttribute("href") : null;
if (href) {

var lp = encodeURIComponent(href);
var slp = document.createElement('script');
slp.setAttribute('src', 'https://idp.company.com/blitz/simple/slp?app=app_

→˓id&lp=' + lp);
document.head.appendChild(slp);

}

An example of Simple protocol settings for an application is shown in the figure below.

2.3. Access to applications and network services 181

Blitz Identity Provider, version 5.23

2. Set the settings for proxying requests to the application on the web server.

The example of configuration file for nginx web‐server:

map "" $idp_host {
default <server hostname>:9000;

}

map "$http_Blitz_Idp" $idp_post_login {
default "0";
"prepare-login" "1";

}

map "$arg_passive" $activLogout {
default "1";
"true" "0";

}

upstream oc-web {
server <application server hostname>:<application port>;

}

server {
listen 80;
server_name <application domain name>;
enforce https
return 301 https://$server_name$request_uri;

}

(continues on next page)

2.3. Access to applications and network services 182

Blitz Identity Provider, version 5.23

(continued from previous page)

server {
listen 443 ssl;
server_name <application domain name>;

resolver 172.27.0.20 172.25.0.50 valid=300s;
#resolver 8.8.8.8 valid=300s;

#ssl_certificate /etc/nginx/cert/<path to SSL certificate>.pem;
#ssl_certificate_key /etc/nginx/cert/<path to SSL certificate key>.pem;

#ssl_certificate /etc/letsencrypt/live/app.company.com/fullchain.pem; #␣
→˓managed by Certbot

#ssl_certificate_key /etc/letsencrypt/live/app.company.com/privkey.pem; #␣
→˓managed by Certbot

access_log /var/log/nginx/oc-acs.log full;
error_log /var/log/nginx/oc-err.log error;

force timeouts if one of backend is died
proxy_next_upstream error timeout invalid_header http_500 http_502 http_

→˓503 http_504;

Set headers
proxy_set_header Accept-Encoding "";
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
add_header Front-End-Https on;
proxy_redirect off;

proxy_set_header Cookie "$http_cookie;domain2auth=$host";
proxy_hide_header Content-Security-Policy;

add_header Content-Security-Policy "default-src 'self' https://$idp_host;␣
→˓script-src 'self' https://$idp_host 'unsafe-eval'; img-src 'self' data:␣
→˓https://$idp_host; style-src 'self' 'unsafe-inline'; font-src 'self' data:;␣
→˓frame-src 'self'; connect-src 'self'";

location ~ <path to login page of the application>$ {
#if ($http_referer ~* "/blitz/simple") {
set $idp_post_login "1";
#}
if ($http_referer ~* "<main server domain name>") {

set $idp_post_login "1";
}
if ($idp_post_login = "1") {

proxy_pass http://oc-web$request_uri;
}
if ($idp_post_login = "0") {

proxy_pass http://$idp_host/blitz/simple/prepare$request_uri;
break;

}
}
location ~ /logout$ {

if ($activLogout = "1") {
return 302 https://<main server domain name>/blitz/simple/active_

→˓logout?app=$host;
}
proxy_pass http://oc-web$request_uri;

(continues on next page)

2.3. Access to applications and network services 183

Blitz Identity Provider, version 5.23

(continued from previous page)

}
location / {

proxy_pass http://oc-web;
}

}

2.3.6 Interaction via the REST API

To invoke the REST services of Blitz Identity Provider, you must configure an application that will act as a client

system for the REST services. To do this, register a new application (page 158) in Applications section.

Then go to the application settings, specify REST as the connection protocol and fill in the following data:

• Password ‐ will be used during HTTP Basic authentication, as login ‐ the client system identifier; if the

parameter is not set, HTTP Basic authentication will not be possible for this client system;

• Permissible CN ‐ list of values of CN attribute of the certificate used in TLS authentication; if no pa‐

rameters are set, TLS authentication will not be possible for this client system.

If the application is not configured with a REST connection protocol, then it will not be able to use the REST APIs

of Blitz Identity Provider server that are secured by HTTP Basic Authorization.

2.3.7 Access to network services via RADIUS

It is possible to configure the connection of users to network access points (RDP, VPN, Wi‐Fi, etc.) using the

RADIUS protocol. The connection setup is performed in the sequence described below.

RADIUS Help

Remote Authentication Dial In User Service (RADIUS) RFC 286544 is a protocol used for centralized management

of authorization, authentication, and accounting for access to network services and equipment. This protocol is

used to communicate between the server and the RADIUS client. After the user requests access to the network

service, the corresponding client sends a request to the server, as a result of which the server checks the presence

of the user in the database. If the user is found, the server sends the client permission to authenticate him.

The RADIUS server is Blitz Identity Provider, the client is a connected network service. In the current implemen‐

tation, the server searches for users in all connected repositories. Network services are configured in Blitz Identity

Provider as an application.

The server supports the following authentication methods:

44 https://datatracker.ietf.org/doc/html/rfc2865

2.3. Access to applications and network services 184

https://datatracker.ietf.org/doc/html/rfc2865

Blitz Identity Provider, version 5.23

• the first factor: login and password;

• the second factor: confirmation by code from SMS, PUSH, TOTP, HOTP, email, or through the User Profile.

Step 1. Configure the RADIUS Server

To configure the RADIUS server in Blitz Identity Provider, follow these steps:

1. In the admin console, go to RADIUS.

2. Configure the server configuration sequentially.

General settings

This tab specifies the general settings of the RADIUS server.

• Status: enabling the server.

• Network binding address: a list of addresses from which the server processes requests.

Tip: To process requests from all available network interfaces, set 0.0.0.0.

• Network port: The RADIUS port to which requests are received. If the port is not specified, then
port 1812 is used.

• Maximum number of requests processed: the maximum number of requests processed

by the server at the same time (the rest are discarded).

• Second factor timeout: The time in seconds that is given to the user to pass the second factor.

Attention: This time must be agreed with the RADIUS client due to the correct setting of the

waiting time for the RADIUS server response.

Click Save.

2.3. Access to applications and network services 185

Blitz Identity Provider, version 5.23

Network segments

The identification of applications is carried out by network segments. Specify the subnet, the shared key,

and the default application so that the request from this subnet is associatedwith this application. If several

applications request authentication from the same subnet, they can be identified by the NasId.

Attention: Subnets with a narrower prefix have priority.

• Name: Enter a custom name for the network segment.

• Subnet: Enter the prefix of the subnet from which requests will be associated with the application.

• Shared key: generate and enter the key that youwill need to enter on the side of a network service
(page 190).

• Default application: Select the application that the request from this subnet will be associ‐

ated with. If there are several applications, it will act as the default application.

• Matching of NasId and applications: if it is assumed that several applications will request authenti‐

cation from the same subnet, set the NasId, by which the RADIUS server will identify them.

Click Save.

Request processing procedures

This tab contains a list of Java procedures that will process requests from connected applications. The pro‐

cedures determine the authentication factor and implement other network access policies. In the simplest

case, the procedures include the first or second factor. You can create several procedures depending on

the security requirements of different network points.

To create a request processing procedure, follow these steps:

1. Click Create a new request processing flow.

2. Specify the settings:

• Status: enabling the procedure.

• Flow identifier: Specify the procedure ID.

2.3. Access to applications and network services 186

Blitz Identity Provider, version 5.23

Attention: The Java class describing the request processing procedure should have the same

name.

• Description: Enter a description of the procedure.

3. Click Save.

4. Enter the source code of the procedure:

• Control the processing of RADIUS requests, you need to write a class in Java that implements the

RadiusFlow interface.

• If the second authentication factor is used, call RadiusResult.more("method"), where
method takes one of the following values: sms, push, totp, hotp, email, prfc (confirma‐

tion in the User Profile).

Note: When confirming through the User Profile, amessage about the login attempt appears

in it, in which the user must click Confirm.

Attention: In order for the factor to work, the User Profile must be opened with the manda‐

tory passage of two authentication factors.

Listing 11: An example of the 2FA procedure via confirmation in your

User Profile

package com.identityblitz.idp.radius.flow;

public class RadTest2 implements RadiusFlow {

public String loginN12(final String login) {
return login;

}

(continues on next page)

2.3. Access to applications and network services 187

Blitz Identity Provider, version 5.23

(continued from previous page)

public RadiusResult next(final RadiusContext context) {
if (context.factor() == 1) {
//return RadiusResult.more("sms");

return RadiusResult.more("prfc");
}

return RadiusResult.authenticated(context.subject());
}

}

• If the first factor is used, deactivate the if (context.factor() == 1).

Listing 12: Example of the 1FA procedure

package com.identityblitz.idp.radius.flow;

public class TestRadius implements RadiusFlow {

public String loginN12(final String login) {
return login;

}

public RadiusResult next(final RadiusContext context) {

return RadiusResult.authenticated(context.subject());
}

}

• You can invoke the confirmation method selector by using RadiusResult.challenge in

the procedure, as well as show an instruction on how to pass the second factor authentication

by using RadiusResult.dialog.

private final Logger logger = LoggerFactory.getLogger("com.
→˓identityblitz.idp.flow.radius");

public String loginN12(final String login) {
return login;

}

public RadiusResult next(final RadiusContext context) {
if (context.factor() == 1) {
return RadiusResult.challenge(Challenges.password());

}
return RadiusResult.authenticated(context.subject());

}

public RadiusResult dialog(final RadiusContext context,
final String message,
final java.util.Map<String, String>␣

→˓answers,
final String answer) {

if(message.equals("challengeChoose")) {
final String challenge = answers.get(answer);
if(challenge != null) return RadiusResult.challenge(Challenges.

→˓byName(challenge));
else return RadiusResult.dialog(message, answers);

(continues on next page)

2.3. Access to applications and network services 188

Blitz Identity Provider, version 5.23

(continued from previous page)

} else {
return RadiusResult.rejected("unsupportedMessage");

}
}

}

5. To compile, click Save.

Step 2. Configure the application

To configure the application, follow these steps:

1. In the admin console, go to Applications. Create an (page 157) application with basic settings.

• Identifier (entityID or client_id),

• Name,

• Domain: the domain of the network service.

Click Save.

2. In the section Protocols of the application on the tab RADIUS set the following settings:

• Check the box The password is checked by the application itself if Blitz Iden‐

tity Provider will be used for the second authentication factor.

• Second factor timeout: The time in seconds that is given to the user to pass the second factor.

If the parameter is omitted, the value will be taken from the RADIUS server settings.

Attention: This time must be agreed with the RADIUS client due to the correct setting of the

waiting time for the RADIUS server response.

• Select the procedure for processing requests from the application. In the list Processing flow
displays all procedures created by (page 185) on the RADIUS server.

2.3. Access to applications and network services 189

Blitz Identity Provider, version 5.23

Attention: Carefully configure integration (page 190) on the network service side. If the NasId
is not defined in the requests coming from the application, the application is recognized by Blitz

Identity Provider as the default application for this network segment, even if they are actually

different applications. In this case, the request processing procedure that is set for the default

application will be performed, and not the one that is selected.

Click Save.

Step 3. Configuration on the network service side

To complete the connection, enter the following settings on the network service side:

• IP address of the server with blitz-idp.

• The shared key specified in the settings network segment (page 185) corresponding to the application (net‐

work service) on the RADIUS server. Using this key, the server will identify the network service and run the

access processing procedure selected for it.

• NasId (if necessary).

• Thewaiting time for a response from the RADIUS server, corresponding to thewaiting time set on the server

for the second factor.

2.3. Access to applications and network services 190

Blitz Identity Provider, version 5.23

2.4 Customization with Java code

2.4.1 Login procedures and their creation

About the login procedures

Java authentication flows are used to configure the rules for user access to different applications. The authenti‐

cation flows can be used to determine, for example, which applications should be available to which users, under

what conditions two‐factor authentication should be required, and which login validation methods a user can

use. The use of authentication flows allows an organization to enforce its application access control policies.

Authentication flows are managed in the section Login procedures of the Blitz Identity Provider admin console.

Creating a procedure

Creation of an authentication flow has following steps:

1. Specifying the basic parameters of the flow:

• flow ID;

• flow description;

• applications ‐ a list of applications that will use the authentication flow.

Important: Only one flow can be created for each application. If no flow is created for a given application, the

standard entry procedure (default authentication flow) will be applied to that application. If a flow is created

without specifying applications, it will replace the standard authentication flow.

2.4. Customization with Java code 191

Blitz Identity Provider, version 5.23

2. Writing the source code of the procedure. For successful operation of the authentication flow it is necessary

to write a Java class that implements the necessary Strategy interface. All context information about

the user, the current state of the authentication flow, etc. is available in the Context object. The flow

consists of two blocks that define:

• actions taken at the initial stage of the authentication process. In this block, for example, it is possi‐

ble to define under what conditions to switch to the application in SSO mode (if the user has been

previously authenticated);

• actions taken after the initial authentication of the user. In this block, for example, you can define

which two‐factor authentication methods to use under which conditions.

3. After writing the code, you should press the “Compile” button. If errors are detected, incorrect code frag‐

ments will be highlighted and signed with errors.

4. If the compilation was successful you can save the flow.

5. The saved procedure can be activated by clicking on the “Activate” button in the header of the correspond‐

ing procedure.

6. Both activated and deactivated procedures can be edited. After editing, compile the procedure and then

save it. If it has been activated, the new compiled flow will replace the old one.

Warning: If the procedure has been activated, only the compiled one can be saved. In other words, if an

error while editing an activated flow has been detected, the “Save” buttonwill not work and after reloading

the page all changes will be lost.

2.4. Customization with Java code 192

Blitz Identity Provider, version 5.23

2.4.2 Ready‐made login procedures

The package includes several ready‐made procedures that can be changed if necessary:

• forced two‐factor application authentication in (page 194) application (Require2ndFactor);

• limiting the list of available first factor methods when logging into the (page 194) application

(FFmethods);

• granting access to the application only with a certain value of the attribute (page 195)

(AccessByAttribute);

• prohibit logging into the application after the account expires (page 197) (AccountExpiresCheck);

• allow logging into the application only from certain networks (page 197) (AllowedIPs);

• prohibit work in several simultaneous sessions (page 199) (RestrictSessions);

• saving a list of user groups in statements (claims) (page 199) (AddGroupsToToken);

• displaying an announcement to the user at login (page 200) (InfoPipe);

• request for user to enter attribute or update a phone number and email (page 202) (PipeAttrActAdd);

• request for the user to enter a security question unless it is asked in the account (page 205) (PipeSecQues‐

tion);

• registration of security key WebAuthn, Passkey, FIDO2 at login (page 206) (PipeWebAuthn).

• display a list of value selections to the user at login (page 208) (ChoicePipe).

2.4. Customization with Java code 193

Blitz Identity Provider, version 5.23

Listings of these procedures are provided below. For ease of debugging, you can output information on the

authentication state to the log using the logger.debug() function. For example, the following command will

log the specified authentication level for a user:

logger.debug("requiredFactor="+ctx.userProps("requiredFactor"));

Forced two‐factor authentication

The Require2ndFactor procedure requires two‐factor authentication to access the application. If a user

goes to the application within a single session, if there is one factor passed, the user will have the second factor

additionally verified, i.e., SSO will not work in this case.

public class Require2ndFactor implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if(ctx.claims("subjectId") != null){

if (ctx.sessionTrack().split(",").length < 2)
return StrategyState.MORE(new String[]{});

else
return StrategyState.ENOUGH();

}
else {

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(final Context ctx) {
if(ctx.justCompletedFactor() == 1)

return StrategyState.MORE(new String[]{});
else

return StrategyState.ENOUGH();
}

}

Limiting the list of available first factor methods

The FFmethods procedure allows to offer only certain identification and authentication methods to the user

when entering the application (a similar procedure with a different list of methods can be assigned to another

application). The procedure uses the following identifiers to designate the first factor authentication methods:

• password ‐ login using login and password;

• x509 ‐ login via electronic signature;

• externalIdps ‐ login via external identity providers (social networks etc.);

• spnego ‐ login via operating system session;

• sms ‐ login via confirmation code from SMS.

• knownDevice ‐ login via known device;

• qrCode ‐ login via QR code;

• webAuthn ‐ login with security keys (WebAuthn, Passkey, FIDO2);

• tls – login based on the transmitted HTTP header.

2.4. Customization with Java code 194

Blitz Identity Provider, version 5.23

public class FFmethods implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{"password","x509"});
}

@Override public StrategyState next(final Context ctx) {
Integer reqFactor = (ctx.user() == null) ? null : ctx.user().

→˓requiredFactor();
if(reqFactor == null || reqFactor == 0)

return StrategyState.ENOUGH();
else {

if(reqFactor == ctx.justCompletedFactor())
return StrategyState.ENOUGH();

else
return StrategyState.MORE(new String[]{});

}
}

}

Log in only with a certain attribute value

The AccessByAttribute procedure uses the appList attribute to decide whether a user can access the

application. This procedure requires the appList attribute to be created as an array (Array of strings).
Application identifiers should be used as the values of the elements of this array. As a result, access to an appli‐

cation will be granted if among the values of appList a given user has the identifier of this application. This

procedure architecture allows you to assign it to several applications at once and control access to them using a

single attribute.

public class AccessByAttribute implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if(ctx.claims("subjectId") != null){

int appListIdx = 0;
boolean hasAccess = false;
while (appListIdx > -1) {

String app = ctx.claims("appList.[" + appListIdx + "]");
logger.debug("app [" + appListIdx + "] = " + app);
if (app == null){ appListIdx = -1; }
else if (app.equals(ctx.appId())) { appListIdx = -1; hasAccess =␣

→˓true; }
else { appListIdx ++; logger.debug("AppList index = " +␣

→˓appListIdx); }
}
if(hasAccess)

return StrategyState.ENOUGH();
else

return StrategyState.DENY;
}
else

(continues on next page)

2.4. Customization with Java code 195

Blitz Identity Provider, version 5.23

(continued from previous page)

return StrategyState.MORE(new String[]{});
}

@Override public StrategyState next(final Context ctx) {
int appListIdx = 0;
boolean hasAccess = false;
while (appListIdx > -1) {

String app = ctx.claims("appList.[" + appListIdx + "]");
logger.debug("app [" + appListIdx + "] = " + app);
if (app == null){ appListIdx = -1; }
else if (app.equals(ctx.appId())) { appListIdx = -1; hasAccess = true;␣

→˓}
else { appListIdx ++; logger.debug("AppList index = " + appListIdx); }

}
if(!hasAccess)

return StrategyState.DENY;
Integer reqFactor = 0;
if (ctx.user() != null) {

reqFactor = ctx.user().requiredFactor();
}
if (reqFactor == 0)

return StrategyState.ENOUGH();
else {

if (reqFactor == ctx.justCompletedFactor())
return StrategyState.ENOUGH();

else
return StrategyState.MORE(new String[]{});

}
}

}

An example of a simplified version of the procedure is to grant a user access to an application provided his e‐mail

address is ivanov@company.ru:

@Override public StrategyBeginState begin(final Context ctx) {
if(ctx.claims("subjectId") != null){
if("ivanov@company.ru".equals(ctx.claims("email")))

return StrategyState.ENOUGH();
else

return StrategyState.DENY;
}
else
return StrategyState.MORE(new String[]{});

}

@Override public StrategyState next(final Context ctx) {
if(!"ivanov@company.ru".equals(ctx.claims("email")))
return StrategyState.DENY;

Integer reqFactor = (ctx.user() == null) ? null : ctx.user().requiredFactor();
if(reqFactor == null)
return StrategyState.ENOUGH();

else {
if(reqFactor == ctx.justCompletedFactor())

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

2.4. Customization with Java code 196

Blitz Identity Provider, version 5.23

Prohibiting login after account expiration

The AccountExpiresCheck procedure uses the accountExpires attribute to decide whether a user has

access to the application. For this procedure to work, you must create an attribute accountExpireswith the

type string (String). In this attribute it is necessary to store the date (in the format yyyy-MM-dd HH:mm,
for example 2021-09-23 13:58), after which the access to the application will be blocked for this user. If the
attribute value is not specified, the user will be allowed to enter the application.

public class AccountExpiresCheck implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){
List<String> methods = new ArrayList<String>(Arrays.asList(ctx.

→˓availableMethods()));
methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(final Context ctx) {
if (ctx.claims("accountExpires") != null && isExpired(ctx.claims("accountExpires

→˓")))
return StrategyState.DENY("account_expired", true);

Integer reqFactor = (ctx.user() == null) ? null : ctx.user().requiredFactor();
if(reqFactor == null || reqFactor == ctx.justCompletedFactor())
return StrategyState.ENOUGH();

else
return StrategyState.MORE(new String[]{});

}

public static boolean isExpired(String strData) {
try {
Date now = new Date();

Date date = new SimpleDateFormat("yyyy-M-d HH:mm").parse(strData);
return now.after(date);

} catch (ParseException e) {
throw new RuntimeException(e);

}
}

}

Log in only from certain networks

The AllowedIPs procedure uses the ALLOW_IP constant to decide whether the user can access the applica‐

tion. In this constant it is necessary to specify the list of networks from which the access to the application is

possible, it is acceptable to specify several networks. When entering the application, the user’s IP address will be

checked to see if it matches one of the values included in the constant. If it matches, the user will be allowed to

enter the application, if it does not match ‐ access will be denied.

public class AllowedIPs implements Strategy {

(continues on next page)

2.4. Customization with Java code 197

Blitz Identity Provider, version 5.23

(continued from previous page)

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

private final static String[] ALLOW_IP = {"179.218","180.219"};

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(final Context ctx) {
if (!_allowed_ip(ctx.ip())) {

return StrategyState.DENY("ip_not_allowed", true);
}
Integer reqFactor = (ctx.user() == null) ? null : ctx.user().

→˓requiredFactor();
if(reqFactor == null || reqFactor == ctx.justCompletedFactor()) {

return StrategyState.ENOUGH_BUILDER()
.build();

} else
return StrategyState.MORE(new String[]{});

}

private Boolean _allowed_ip(final String IP) {
int IpListIdx = 0;
boolean ipAllowed = false;
while (IpListIdx > -1) {

String ip_part = ALLOW_IP[IpListIdx];
if (IP.startsWith(ip_part)) {

ipAllowed = true;
IpListIdx = -1;

} else if (ALLOW_IP.length == (IpListIdx + 1)) {
IpListIdx = -1;

} else {
IpListIdx ++;

}
}

return ipAllowed;
}

}

2.4. Customization with Java code 198

Blitz Identity Provider, version 5.23

Prohibition of work in several simultaneous sessions

The RestrictSessions procedure prohibits working in multiple sessions.

public class RestrictSessions implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
List<String> methods = new ArrayList<String>(Arrays.asList(ctx.

→˓availableMethods()));
if ("login".equals(ctx.prompt())){

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)
return StrategyState.ENOUGH();

else {
methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]));

}
}

}

@Override public StrategyState next(final Context ctx) {
Integer reqFactor = (ctx.user() == null) ? null : ctx.user().

→˓requiredFactor();
if(reqFactor == null || reqFactor == ctx.justCompletedFactor()) {

return StrategyState.ENOUGH_BUILDER().singleSession(true).build();
} else

return StrategyState.MORE(new String[]{});
}

}

Saving a list of user groups in claims

The AddGroupsToToken procedure records a list of user groups in the grps statement. For this procedure

to work, the conditions must be met:

• memberOf attribute is configured to display the user’s groups;

• session statement grps (see Adding attributes to an identity token (page 177)) was added to the configu‐

ration file.

When logging into the application, it will check if the user has groups in the memberOf attribute, and if they are

present there, they will be added to the grps statement.

public class AddGroupsToToken implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

(continues on next page)

2.4. Customization with Java code 199

Blitz Identity Provider, version 5.23

(continued from previous page)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(final Context ctx) {
Integer reqFactor = (ctx.user() == null) ? null : ctx.user().

→˓requiredFactor();
if(reqFactor == null || reqFactor == ctx.justCompletedFactor()) {

List<String> grps = new ArrayList<String>();
int groupListIdx = 0;
while (groupListIdx > -1) {
String group = ctx.claims("memberOf.[" + groupListIdx + "]");
logger.debug("### group [" + groupListIdx + "] = " + group);
if (group == null) {
groupListIdx = -1;

} else {
grps.add(ctx.claims("memberOf.[" + groupListIdx + "]"));
groupListIdx ++;

}
}
LClaimsBuilder claimsBuilder = ctx.claimsBuilder();
if (grps.size() > 0) {

claimsBuilder.addClaim("grps", grps);
}
LClaims claims = claimsBuilder.build();
return StrategyState.ENOUGH_BUILDER()

.withClaims(claims)

.build();
} else

return StrategyState.MORE(new String[]{});
}

}

Displaying an announcement to the user at login

You can configure Blitz Identity Provider to show an announcement to the user upon login. This can show the

user one or two buttons, and the user’s choice can be analyzed in the login procedure.

Procedure

The InfoPipe procedure allows ads to be shown to the user at 30‐day intervals when they log in. The following
changes must be made to the procedure before it can be used:

• in the requiredNews() function, adjust the criteria for displaying the ad ‐ for example, in the example

it is set to show once every 30 days if the user clicked the refuse button last time the ad was displayed;

• in the DOMAIN constant, specify the URI at which Blitz Identity Provider is accessible from the user’s

browser;

• настроить (page 202) notification type in the configuration file;

• configure (page 241) notification text and button names in messages.

public class InfoPipe implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.

(continues on next page)

2.4. Customization with Java code 200

Blitz Identity Provider, version 5.23

(continued from previous page)

→˓flow.dynamic");
private final static String DOMAIN = "example.com";

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(Context ctx) {
if (ctx.user() == null || ctx.user().requiredFactor() == null ||

ctx.user().requiredFactor().equals(ctx.justCompletedFactor()))
if (requiredNews("user_agreement", ctx)) return showNews("user_

→˓agreement", ctx);
else return StrategyState.ENOUGH();

else
return StrategyState.MORE(new String[] {});

}

private boolean requiredNews(final String pipeId, final Context ctx) {
Long readOn = ctx.user().userProps().numProp("pipes.info." + pipeId + ".

→˓disagreedOn");
return (readOn == null || Instant.now().getEpochSecond() - readOn >␣

→˓30*86400);
}

private StrategyState showNews(final String pipeId, final Context ctx) {
String uri = "https://" + DOMAIN + "/blitz/pipes/info/start?&pipeId=" +␣

→˓pipeId + "&appId=_blitz_profile";
Set<String> claims = new HashSet<String>(){{

add("instanceId");
}};
Set<String> scopes = new HashSet<String>(){{

add("openid");
}};
return StrategyState.ENOUGH_BUILDER()
.withPipe(uri, "<CLIENT_ID>", scopes, claims)
.build();

}
}

2.4. Customization with Java code 201

Blitz Identity Provider, version 5.23

Adding a procedure to blitz.conf

in the blitz.conf configuration file add the blitz.prod.local.idp.built-in-pipes section, in

which assign the id identifier specified in the procedure and the type announcement type to the auxiliary

application with the info type. The following announcement configurations are possible:

• news ‐ a single button is displayed,

• agreement ‐ two buttons are displayed.

Example configuration of two info helper applications with identifiers alarm and user_agreement:

"built-in-pipes": {
"info": [

{
"id": "alarm",
"type": "news"

},
{

"id": "user_agreement",
"type": "agreement"

}
]

}

Request for user to enter attribute or actualize phone and email

The PipeAttrActAdd procedure allows to request the user to enter the attribute value. For cell phone and

for email, periodic updating of the contact is implemented. For regular attribute (in the example family_name
is used) one‐time filling of the attribute. In case the user did not want to fill the attribute, the next request to

enter the attribute after a certain time will be realized.

The following modifications must be made to the procedure before use:

• in the DOMAIN constant, specify the URI at which Blitz Identity Provider is accessible from the user’s

browser;

• in the constants MOBILE_ATTR, EMAIL_ATTR, COMMON_ATTR specify the names of the attributes to

be filled in;

• in theSKIP_TIME_IN_SEC constant specify the time, notmore often thanwhich the user will be offered

to fill the attribute;

• in the ACT_TIME_IN_SEC constant specify the time, not more often than which the user will be offered

to update phone or email;

• in the ASK_AT_1ST_LOGIN constant, change the value if the request to fill in the contact should be

performed at the first login (usually the first login occurs immediately after the account registration, so the

setting is made so that the user is not prompted to fill in the data at the first login);

• in the body of the procedure instead of _blitz_profile specify the identifier of another application,

if the attributes change should be made from an application other than the user profile;

• set texts in messages for attribute from COMMON_ATTR (default texts for email and phone can also be

adjusted) ‐ see :ref:config-pipes-messages. Auxiliary application messages (pipes) (page 241).

public class PipeAttrActAdd implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

private final static String DOMAIN = "example.com";
private final static String MOBILE_ATTR = "phone_number";

(continues on next page)

2.4. Customization with Java code 202

Blitz Identity Provider, version 5.23

(continued from previous page)

private final static String EMAIL_ATTR = "email";
private final static String COMMON_ATTR = "family_name";
private final static Integer SKIP_TIME_IN_SEC = 30*86400;
private final static Integer ACT_TIME_IN_SEC = 30*86400;
private final static Boolean ASK_AT_1ST_LOGIN = false;

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(final Context ctx) {
Instant instant = Instant.now();
Boolean new_device = false;
if (ctx.ua().getNewlyCreated() && ctx.justCompletedFactor() == 1 && !ASK_

→˓AT_1ST_LOGIN){
logger.debug("User with sub={} is signing in, pid={}, on a new device",

ctx.claims("subjectId"), ctx.id());
new_device = true;

}
Integer reqFactor = ctx.user().requiredFactor();
if(reqFactor == null || reqFactor == ctx.justCompletedFactor()) {

Enough.Builder en_builder = StrategyState.ENOUGH_BUILDER();
if (MOBILE_ATTR !=null && !new_device && requireActualizeAttr(MOBILE_

→˓ATTR, ctx)) {
String uri = "https://"+DOMAIN+"/blitz/pipes/attr/act?attr="

+MOBILE_ATTR+"&canSkip=true&appId=_blitz_profile&verified=true
→˓";

Set<String> clms = new HashSet<String>(){{
add("instanceId");
add(MOBILE_ATTR);

}};
Set<String> scps = new HashSet<String>(){{

add("openid");
}};
logger.debug("User has no {} or a non-actualzed {}, so opening pipe

→˓",
MOBILE_ATTR, MOBILE_ATTR);

en_builder = en_builder.withPipe(uri, "_blitz_profile", scps,␣
→˓clms);

} else if (EMAIL_ATTR !=null && !new_device &&␣
→˓requireActualizeAttr(EMAIL_ATTR, ctx)) {

String uri = "https://"+DOMAIN+"/blitz/pipes/attr/act?attr="
+EMAIL_ATTR+"&canSkip=true&appId=_blitz_profile&verified=true";

Set<String> clms = new HashSet<String>(){{
add("instanceId");
add(EMAIL_ATTR);

}};
Set<String> scps = new HashSet<String>(){{

add("openid");
}};
logger.debug("User has no {} or a non-actualzed {}, so opening pipe

(continues on next page)

2.4. Customization with Java code 203

Blitz Identity Provider, version 5.23

(continued from previous page)

→˓",
EMAIL_ATTR, EMAIL_ATTR);

en_builder = en_builder.withPipe(uri, "_blitz_profile", scps,␣
→˓clms);

} else if (COMMON_ATTR !=null && !new_device &&
requireActualizeAttr(COMMON_ATTR, ctx)) {

String uri = "https://"+DOMAIN+"/blitz/pipes/attr/act?attr="
+COMMON_ATTR+"&canSkip=true&appId=_blitz_profile";

Set<String> clms = new HashSet<String>(){{
add("instanceId");
add(COMMON_ATTR);

}};
Set<String> scps = new HashSet<String>(){{

add("openid");
}};
logger.debug("User has no {}, so opening pipe", COMMON_ATTR);
en_builder = en_builder.withPipe(uri, "_blitz_profile", scps,␣

→˓clms);
}
return en_builder.build();

} else {
return StrategyState.MORE(new String[]{});

}
}

private Boolean requireActualizeAttr(final String attrName, final Context ctx)
→˓{

if (attrName.equals(MOBILE_ATTR) && (ctx.passedTrack().startsWith("1:sms")␣
→˓||

ctx.passedTrack().endsWith("sms"))) {
logger.debug("User subjectId = {}, pid = {} used SMS, so no␣

→˓actualization needed",
ctx.claims("subjectId"), ctx.id());

return false;
}
if (attrName.equals(EMAIL_ATTR) && ctx.passedTrack().endsWith("email")) {

logger.debug(
"User subjectId = {}, pid = {} used EMAIL while auth, so no␣

→˓actualization needed",
ctx.claims("subjectId"), ctx.id());

return false;
}
Long skpTime = null;
Long actTime = null;
long now = Instant.now().getEpochSecond();
if (ctx.user().userProps().numProp("pipes.act."+attrName+".skippedOn") !=␣

→˓null) {
skpTime = ctx.user().userProps().numProp("pipes.act."+attrName+".

→˓skippedOn");
}
if (skpTime != null && ((now - skpTime) < SKIP_TIME_IN_SEC)) {

logger.debug(
"User subjectId = {}, pid = {} has skipped update '{}' only '{}'␣

→˓seconds ago, no actualization needed", ctx.claims("subjectId"), ctx.id(),␣
→˓attrName, (now - skpTime));

return false;
}
if (ctx.claims(attrName) == null) return true;
else {

if (ctx.user().attrsCfmTimes() != null) {
actTime = ctx.user().attrsCfmTimes().get(attrName);

(continues on next page)

2.4. Customization with Java code 204

Blitz Identity Provider, version 5.23

(continued from previous page)

}
if (actTime == null) return true;
else {

logger.debug(
"User subjectId = {}, pid = {} has updated '{}' '{}' seconds␣

→˓ago, actualization needed = {}", ctx.claims("subjectId"), ctx.id(), attrName,␣
→˓(now - actTime), ((now - actTime) > ACT_TIME_IN_SEC));

return ((now - actTime) > ACT_TIME_IN_SEC);
}

}
}

}

Requesting the user to enter a security question

The“PipeSecQuestion“ procedure checks whether the user has a security question. If the question is not asked,

the procedure prompts the user to enter it.

The following modifications must be made to the procedure before use:

• in the DOMAIN constant, specify the URI at which Blitz Identity Provider is accessible from the user’s

browser;

• in the“CAN_SKIP“ constant, specify the display mode: true– the user can skip filling; false – the user

must set the value of the security question to complete authentication.

public class PipeSecQuestion implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

private final static String DOMAIN = "example.com";
private final static Boolean CAN_SKIP = true;

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(final Context ctx) {
Integer reqFactor = (ctx.user() == null) ? null : ctx.user().

→˓requiredFactor();
if (reqFactor == null || reqFactor.equals(ctx.justCompletedFactor())){

if(requireAddSecQsn(ctx)) return addSecQsn(ctx);
else return StrategyState.ENOUGH();

}
else return StrategyState.MORE(new String[]{});

}

private Boolean requireAddSecQsn(final Context ctx) {
String secQsn = (ctx.user() == null) ? null : ctx.user().

→˓securityQuestion();

(continues on next page)

2.4. Customization with Java code 205

Blitz Identity Provider, version 5.23

(continued from previous page)

Long agreedOn = (ctx.user() == null) ? null : ctx.user().userProps().
→˓numProp("pipes.addSecQsn.agreedOn");

Long disagreedOn = (ctx.user() == null) ? null : ctx.user().userProps().
→˓numProp("pipes.addSecQsn.disagreedOn");

if (secQsn != null) return false;
else if (disagreedOn == null) return true;
else {

long now = Instant.now().getEpochSecond();
return ((now - disagreedOn) > 1);

}
}

private StrategyState addSecQsn(final Context ctx) {
String uri = "https://"+DOMAIN+"/blitz/pipes/secQsn/start?canSkip="+CAN_

→˓SKIP+"&appId=_blitz_profile";
Set<String> claims = new HashSet<String>(){{
add("instanceId");

}};
Set<String> scopes = new HashSet<String>(){{

add("openid");
}};

return StrategyState.ENOUGH_BUILDER()
.withPipe(uri, "_blitz_profile", scopes, claims)
.build();

}
}

Registration of security key (WebAuthn, Passkey, FIDO2) at login

The PipeWebAuthn procedure allows you to request the user to register a security key (WebAuthn, Passkey,

FIDO2) at login.

The following modifications must be made to the procedure before use:

• in the DOMAIN constant, specify the URI at which Blitz Identity Provider is accessible from the user’s

browser;

• in theSKIP_TIME_IN_SEC constant specify the time, notmore often thanwhich the user will be offered

to fill the attribute;

• in the ASK_AT_1ST_LOGIN constant, change the value if the request for security key issuance should

be performed at the first login (usually the first login occurs immediately after account registration, so the

setting is made so that the user is not prompted to fill in the data at the first login);

• in the body of the procedure instead of _blitz_profile specify the identifier of another application,

if the attributes change should be made from an application other than the user profile.

public class PipeWebAuthn implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

private final static String DOMAIN = "example.com";
private final static Integer SKIP_TIME_IN_SEC = 30*86400;
private final static Boolean ASK_AT_1ST_LOGIN = true;

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");

(continues on next page)

2.4. Customization with Java code 206

Blitz Identity Provider, version 5.23

(continued from previous page)

return StrategyState.MORE(methods.toArray(new String[0]), true);
} else {

if(ctx.claims("subjectId") != null)
return StrategyState.ENOUGH();

else
return StrategyState.MORE(new String[]{});

}
}

@Override
public StrategyState next(Context ctx) {

Boolean new_device = false;
if (ctx.ua().getNewlyCreated() && ctx.justCompletedFactor() == 1 && !ASK_

→˓AT_1ST_LOGIN){
logger.debug("User with sub={} is signing in, pid={}, on a new device",

ctx.claims("subjectId"), ctx.id());
new_device = true;

}
if (ctx.user() == null || ctx.user().requiredFactor() == null ||

ctx.user().requiredFactor().equals(ctx.justCompletedFactor()))
if (!new_device && requiredWebAuthn(ctx))

return webAuthn(ctx);
else

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[] {});
}

private boolean requiredWebAuthn(final Context ctx) {
LBrowser br = ctx.ua().asBrowser();
String deviceType = br.getDeviceType();
String os = br.getOsName();
List<WakMeta> keyList = null;
logger.trace("User subjectId = {}, pid = {} is logging using device '{}'␣

→˓and OS '{}', checking configured webAuthn keys", ctx.claims("subjectId"), ctx.
→˓id(), deviceType, os);

ListResult<WakMeta> keys = ctx.dataSources().webAuthn().
→˓keysOfCurrentSubject();

if (keys != null) {
keyList = keys.filter(k -> deviceType.equals(k.addedOnUA().

→˓deviceType()))
.filter(k -> os.equals(k.addedOnUA().osName())).list();

}
if (keys != null && keyList.size() > 0) {

logger.debug("User subjectId = {}, pid = {} has '{}' webAuthn keys for␣
→˓device '{}' and OS '{}'", ctx.claims("subjectId"), ctx.id(), keyList.size(),␣
→˓deviceType, os);

return false;
} else {

logger.debug("User subjectId = {}, pid = {} has no configured webAuthn␣
→˓keys for device '{}' and OS '{}'", ctx.claims("subjectId"), ctx.id(), deviceType,
→˓ os);

}
Long disagreedOn = ctx.user().userProps().numProp("pipes.addKey." +␣

→˓deviceType + "." + os + ".disagreedOn");
if (disagreedOn == null) {

return true;
} else if (Instant.now().getEpochSecond() - disagreedOn > SKIP_TIME_IN_

→˓SEC) {
logger.debug("User subjectId = {}, pid = {} has skipped Webauthn '{}'␣

→˓seconds ago, so open webAuthn pipe", ctx.claims("subjectId"), ctx.id(), (Instant.

(continues on next page)

2.4. Customization with Java code 207

Blitz Identity Provider, version 5.23

(continued from previous page)

→˓now().getEpochSecond() - disagreedOn));
return true;

} else {
logger.debug("User subjectId = {}, pid = {} has skipped Webauthn '{}'␣

→˓seconds ago, no need to open webAuthn pipe", ctx.claims("subjectId"), ctx.id(),␣
→˓(Instant.now().getEpochSecond() - disagreedOn));

return false;
}

}

private StrategyState webAuthn(final Context ctx) {
String uri = "https://"+DOMAIN+"/blitz/pipes/conf/webAuthn/start?&

→˓canSkip=true&appId=_blitz_profile";
Set<String> claims = new HashSet<String>(){{

add("instanceId");
}};
Set<String> scopes = new HashSet<String>(){{

add("openid");
}};
Map<String, Object> urParams = new HashMap<String, Object>();
return StrategyState.ENOUGH_BUILDER()

.withPipe(uri, "_blitz_profile", scopes, claims).build();
}

}

Display a list of value selections to the user at login

You can configure after login Blitz Identity Provider to show the user a selection box from a list of values and store

the result of the selection in an attribute in the user’s account.

Procedure

The ChoicePipe procedure allows the user to show the value list selection pages on login. The following

changes must be made to the procedure before it can be used:

• in the DOMAIN constant instead of <BLITZ-HOST> specify the URI where Blitz Identity Provider is ac‐

cessible from the user’s browser, and in the CLIENT_ID constant instead of <CLIENT_ID> specify the

application identifier (with permissions to scope openid) on behalf of which the helper application will
be executed;

• set the notification type in the configuration file (page 209);

• set (page 241) notification text and button names in messages.

public class ChoicePipe implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

private final static String DOMAIN = "<BLITZ-HOST>";
private final static String CLIENT_ID = "<CLIENT_ID>";

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

(continues on next page)

2.4. Customization with Java code 208

Blitz Identity Provider, version 5.23

(continued from previous page)

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override
public StrategyState next(Context ctx) {

List<List<String>> choice = new ArrayList<List<String>>(){};
choice.add(Arrays.asList("Value 1"));
choice.add(Arrays.asList("Value 2"));
try {

if (ctx.user() == null || ctx.user().requiredFactor() == null
|| ctx.user().requiredFactor().equals(ctx.

→˓justCompletedFactor())) {
String res = new ObjectMapper().writeValueAsString(choice);
String choiceJson = Base64.getUrlEncoder().encodeToString(res.

→˓getBytes("UTF-8"));
return choice(ctx, choiceJson);

}
else

return StrategyState.MORE(new String[] {});
} catch (Exception e) {

e.printStackTrace();
return null;

}
}

private StrategyState choice(final Context ctx, final String choiceJson) {
String uri = "https://" + DOMAIN + "/blitz/pipes/choice/start?appId=" +␣

→˓CLIENT_ID + "&pipeId=select_value&choices=" + choiceJson;
Set<String> claims = new HashSet<String>(){{

add("instanceId");
}};
Set<String> scopes = new HashSet<String>(){{

add("openid");
}};

return StrategyState.ENOUGH_BUILDER()
.withPipe(uri, CLIENT_ID, scopes, claims)
.build();

}
}

Adding a procedure to blitz.conf

in the blitz.conf configuration file add a section blitz.prod.local.idp.built-in-pipes in

which assign to the auxiliary applicationwithchoice` type the identifier ``id specified in the pro‐
cedure and the name of the attribute claim in which save the selection result.

Configuration example of the choice helper application:

"built-in-pipes": {
"choice": [

{
"id": "select_value",
"claim": "role"

}

(continues on next page)

2.4. Customization with Java code 209

Blitz Identity Provider, version 5.23

(continued from previous page)

]
}

2.4.3 Functions and methods of various purposes in login procedures

This section contains examples of functions and methods that you can use when writing Blitz Identity Provider

login procedures.

See also:

For your convenience, Blitz Identity Provider also provides a set of ready‐made procedures (page 193).

Obtaining the user’s geodata

The login procedure can be used to obtain data about the country and city where the user is located, and based

on this, flexibly configure the login rules, for example, to prohibit login from abroad, activate the second authen‐

tication factor, etc.

To do this, use the following classes and methods in the login procedures:

1. LGeoData class with getCountry() and getCity() functions.

public class LGeoData {
/**
* Get IP address country
*
* @return - country or null if country not specified.
*/
public final String getCountry();

/**
* Get IP address city
*
* @return - city or null if city not specified.
*/

public final String getCity();
}

2. geoData()method in Context.

/**
* Get geo data of user IP address
*
* @return - geo data.
*/
LGeoData geoData();

Important: For the method to work, you need to import the LGeoData class.

import com.identityblitz.idp.login.authn.flow.LGeoData

2.4. Customization with Java code 210

Blitz Identity Provider, version 5.23

Listing 13: An example of the code that outputs the user’s country and

city to the log

import com.identityblitz.idp.login.authn.flow.LGeoData;

LGeoData geoData = _ctx.geoData();
String country = geoData.getCountry();
logger.trace("IP location: country - {}, city - {}, factor - {}", country ,␣
→˓geoData.getCity());

Listing 14: An example of a procedure involving 2FA for certain countries

package com.identityblitz.idp.flow.dynamic;

import java.lang.*;
import java.util.*;
import java.text.*;
import java.time.*;
import java.math.*;
import java.security.*;
import javax.crypto.*;
import org.slf4j.LoggerFactory;
import org.slf4j.Logger;
import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.type.TypeReference;
import com.identityblitz.idp.login.authn.flow.api.*;
import com.identityblitz.idp.login.authn.flow.Context;
import com.identityblitz.idp.login.authn.flow.Strategy;
import com.identityblitz.idp.login.authn.flow.StrategyState;
import com.identityblitz.idp.login.authn.flow.StrategyBeginState;
import com.identityblitz.idp.login.authn.flow.LCookie;
import com.identityblitz.idp.login.authn.flow.LUserAgent;
import com.identityblitz.idp.login.authn.flow.LBrowser;
import com.identityblitz.idp.login.authn.flow.LGeoData;
import com.identityblitz.idp.federation.matching.JsObj;
import com.identityblitz.idp.flow.common.api.*;
import com.identityblitz.idp.flow.dynamic.*;
import java.util.function.Predicate;
import java.util.stream.Stream;
import java.util.stream.Collectors;
import java.lang.invoke.LambdaMetafactory;
import java.util.function.Consumer;
import static com.identityblitz.idp.login.authn.flow.StrategyState.*;

public class EnableSecondFactorByCountry implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});

(continues on next page)

2.4. Customization with Java code 211

Blitz Identity Provider, version 5.23

(continued from previous page)

}
}

@Override public StrategyState next(final Context ctx) {
Integer reqFactor = (ctx.user() == null) ? null : ctx.user().

→˓requiredFactor();
LGeoData geoData = ctx.geoData();
String country = geoData.getCountry();
logger.info("IP location: country - {}, city - {}, factor - {}", country ,␣

→˓geoData.getCity());
if(ctx.justCompletedFactor() == 1 && (country == null || !country.equals(

→˓"Russia")))
return StrategyState.MORE(new String[]{});

else
return StrategyState.ENOUGH();

}
}

User session reset

In a login procedure, you can force a user’s session to be reset under certain conditions. To do this, use the

StrategyState.MORE_BUILDER() function with the following methods:

• setResetSession(reset: Boolean): true ‐ reset the session, false ‐ do not reset (default

false).

• isResetSession(): lets you know if the session has been reset.

The example below contains a script that resets a session if ctx.prompt=login:

package com.identityblitz.idp.flow.dynamic;

import java.lang.*;
import java.util.*;
import java.text.*;
import java.time.*;
import java.math.*;
import java.security.*;
import javax.crypto.*;
import org.slf4j.LoggerFactory;
import org.slf4j.Logger;
import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.type.TypeReference;
import com.identityblitz.idp.login.authn.flow.api.*;
import com.identityblitz.idp.login.authn.flow.Context;
import com.identityblitz.idp.login.authn.flow.Strategy;
import com.identityblitz.idp.login.authn.flow.StrategyState;
import com.identityblitz.idp.login.authn.flow.StrategyBeginState;
import com.identityblitz.idp.login.authn.flow.LCookie;
import com.identityblitz.idp.login.authn.flow.LUserAgent;
import com.identityblitz.idp.login.authn.flow.LBrowser;
import com.identityblitz.idp.login.authn.flow.LGeoData;
import com.identityblitz.idp.federation.matching.JsObj;
import com.identityblitz.idp.flow.common.api.*;
import com.identityblitz.idp.flow.dynamic.*;
import java.util.function.Predicate;
import java.util.stream.Stream;
import java.util.stream.Collectors;
import java.lang.invoke.LambdaMetafactory;
import java.util.function.Consumer;

(continues on next page)

2.4. Customization with Java code 212

Blitz Identity Provider, version 5.23

(continued from previous page)

import static com.identityblitz.idp.login.authn.flow.StrategyState.*;

public class ResetSession implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
logger.info("### RESET_SESSION");
return StrategyState.MORE_BUILDER().setResetSession(true).

→˓addMethods(methods.toArray(new String[0])).build();
} else {

if(ctx.claims("subjectId") != null)
return StrategyState.ENOUGH();

else
return StrategyState.MORE(new String[]{});

}
}

@Override public StrategyState next(final Context ctx) {
Integer reqFactor = (ctx.user() == null) ? null : ctx.user().

→˓requiredFactor();
if(reqFactor == null || reqFactor == ctx.justCompletedFactor())

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

Invoking custom errors in script

Blitz Identity Provider allows you to create custom errors and call them in login procedures. Do the following:

1. Following the instructions (page 234), add a custom error message to the messages file in the /usr/
share/identityblitz/blitz-config/custom_messages directory.

err.bad_gateway=Недоступно

2. Call this error upon getting HTTP 502.

if (result.status() == 502) {
return HttpLoop.error("bad_gateway",

Collections.<String, String>
→˓singletonMap("status", "" + result.status()));
}

Sample script that calls a custom HTTP 502 error for the Flash Call (page 104) authentication method:

package flashcall;

import com.identityblitz.core.loop.http.HttpLoop;
import com.identityblitz.core.loop.http.HttpLoopRequest;
import com.identityblitz.core.loop.http.HttpLoopResult;
import com.identityblitz.core.loop.JsObj;

(continues on next page)

2.4. Customization with Java code 213

Blitz Identity Provider, version 5.23

(continued from previous page)

import java.util.Collections;

public class FlashCallFlow implements HttpLoop {

public HttpLoopRequest run(final JsObj obj, final HttpLoopResult␣
→˓result) {

if (result == null) {
final String number = obj.asString("phone_number");
return HttpLoop.callBuilder("POST", "http://test.

→˓flashcall.ru/api/v1")
.withHeader("Token", "1234567890")
.withBody(JsObj.empty.addString("id",

→˓"test").addString("dst_number", number.substring(number.length() - 10)))
.build(JsObj.empty);

} else if (result.status() == 200) {
final JsObj body = result.body();
return HttpLoop.Ok(JsObj.empty.addString("code", body.

→˓asString("SenderID")));
} else if (result.status() == 502) {

return HttpLoop.error("bad_gateway",
Collections.<String, String>

→˓singletonMap("status", "" + result.status()));
} else {

return HttpLoop.error("wrong_http_status",
Collections.<String, String>

→˓singletonMap("status", "" + result.status()));
}

}
}

Analyzing application tags

Blitz Identity Provider allows you to assign tags (page 157) to applications and set the operation logic regarding

the tagged apps in login procedures.

To retrieve application tags, a procedure must use the ctx.appTags()method within Context.

Attention: For the method to work, you must import java.util.Set.

An example of a procedure that obtains the 2F tag and uses it to enable the second factor authentication:

package com.identityblitz.idp.flow.dynamic;

import java.lang.*;
import java.util.*;
import java.text.*;
import java.time.*;
import java.math.*;
import java.security.*;
import javax.crypto.*;
import org.slf4j.LoggerFactory;
import org.slf4j.Logger;
import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.type.TypeReference;
import com.identityblitz.idp.login.authn.flow.api.*;
import com.identityblitz.idp.login.authn.flow.Context;
import com.identityblitz.idp.login.authn.flow.Strategy;

(continues on next page)

2.4. Customization with Java code 214

Blitz Identity Provider, version 5.23

(continued from previous page)

import com.identityblitz.idp.login.authn.flow.StrategyState;
import com.identityblitz.idp.login.authn.flow.StrategyBeginState;
import com.identityblitz.idp.login.authn.flow.LCookie;
import com.identityblitz.idp.login.authn.flow.LUserAgent;
import com.identityblitz.idp.login.authn.flow.LBrowser;
import com.identityblitz.idp.login.authn.flow.LGeoData;
import com.identityblitz.idp.federation.matching.JsObj;
import com.identityblitz.idp.flow.common.api.*;
import com.identityblitz.idp.flow.dynamic.*;
import java.util.function.Predicate;
import java.util.stream.Stream;
import java.util.stream.Collectors;
import java.lang.invoke.LambdaMetafactory;
import java.util.function.Consumer;
import static com.identityblitz.idp.login.authn.flow.StrategyState.*;

public class UseAppTags implements Strategy {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓flow.dynamic");

@Override public StrategyBeginState begin(final Context ctx) {
if ("login".equals(ctx.prompt())){

List<String> methods = new ArrayList<String>(Arrays.asList(ctx.
→˓availableMethods()));

methods.remove("cls");
return StrategyState.MORE(methods.toArray(new String[0]), true);

} else {
if(ctx.claims("subjectId") != null)

return StrategyState.ENOUGH();
else

return StrategyState.MORE(new String[]{});
}

}

@Override public StrategyState next(final Context ctx) {
Set<String> tags = ctx.appTags();
logger.info("APP TAGS: " + tags);
if (ctx.justCompletedFactor() == 1 && tags.contains("2F"))

return StrategyState.MORE(new String[]{});
else

return StrategyState.ENOUGH();
}

}

2.4.4 Customization of the logic of operations with data storages

Customization principle

Blitz Identity Provider allows you to customize the logic of operations with data storages. To do this, a Java class

with a fixed name and the package com.identityblitz.idp.store.id.logic.dynamic is used.

There are eight custom procedures, one for each operation with a fixed class name:

• searchUser— CustomSearchUsersLogic.java

• getUser— CustomGetUserLogic.java

• findUser— CustomFindUserLogic.java

• bindUser— CustomBindUserLogic.java

2.4. Customization with Java code 215

Blitz Identity Provider, version 5.23

• changeUserPassword— CustomChangeUserPasswordLogic.java

• addUser— CustomAddUserLogic.java

• updateUser— CustomUpdateUserLogic.java

• deleteUser— CustomDeleteUserLogic.java

Configuration

To configure custom logic for the required operations, follow these steps:

1. Place Java files with custom logic in a directory:

/usr/share/identityblitz/blitz-config/dynamic/idstore/<operation_name_in_
→˓lowercase>

For example, to enable custom logic for searchUsers and bindUser, place the files Custom‐

SearchUsersLogic.java‘ and CustomBindUserLogic.java to the directories /usr/share/
identityblitz/blitz-config/dynamic/idstore/searchusers and /usr/share/
identityblitz/blitz-config/dynamic/idstore/binduser respectively.

2. Open the configuration file /usr/share/identityblitz/blitz-config/blitz.conf.

sudo vim /usr/share/identityblitz/blitz-config/blitz.conf

3. Add a new logic block to the blitz.prod.local.idp.id-stores block. The new block must

contain the names of the customized operations specified as the key and the { "enabled": true}
section as the key value.

Listing 15: Customization of searchUsers and bindUser operations

{
"logic": {

"searchUsers": {
"enabled": true

},
"bindUser": {

"enabled": true
}

}
}

Writing a custom procedure

Custom procedures for all operations have the same specification, but use their own context and utility functions.

Eachmethod in the procedures corresponds to a specific state of the operation executionprocess. In themethods,

it is necessary to implement the logic ofmoving to the next cycle (followed by calling a newmethod) or completing

the operation.

Each method in the procedure returns a pair of LoopOutput and OperationState. LoopOutput‘ can be:

1. terminal – completes the logical cycle of operation in one of the following ways:

• error;

• success (the result of success for a certain operation);

• the final save operation (perform the save operationwith some parameters and finishwith the result).

2. task ‐ more cycle iterations are required:

• request to the repository to perform a specific operation;

2.4. Customization with Java code 216

Blitz Identity Provider, version 5.23

• request to an external web service.

At the moment, the mechanism of custom procedures is being beta tested. You can request a detailed Java

specification and get advice on customization options in your environment from our technical specialists at sup‐

port@idblitz.ru.

2.4.5 Procedures for binding external user accounts

Besides the basic configuration (page 122), it is possible to bind accounts for each external identity provider by

using a binding procedure in Java. This mode provides maximum configuration flexibility and is suitable for highly

specialized account binding and attribute mapping scenarios.

The customization is available under Identity providers ‐> Account linking ‐> Advanced customization. To write

your own procedure, follow the instructions in the basic procedure as well as the recommendations in this section

of the documentation.

2.4. Customization with Java code 217

mailto:support@idblitz.ru
mailto:support@idblitz.ru

Blitz Identity Provider, version 5.23

2.4. Customization with Java code 218

Blitz Identity Provider, version 5.23

User registration in external identity provider

In the form where you enter login and password to authenticate through an external identity provider, you may

see a link to the external provider registration page (No account? Register). In order for the link not to be dis‐

played, the refine and matchByLogin functions in the bind procedure must be called without specifying

registration parameters.

• refine(cxt, users) instead of refine(cxt, users, regAttrs);

• matchByLogin(cxt) instead of matchByLogin(cxt, regAttrs).

Here’s an example of how to use those functions in a procedure:

package com.identityblitz.idp.federation.matching.dynamic;

import java.lang.*;
import java.util.*;
import java.text.*;
import java.time.*;
import java.math.*;
import java.security.*;
import javax.crypto.*;
import org.slf4j.LoggerFactory;
import org.slf4j.Logger;
import com.identityblitz.idp.federation.*;
import com.identityblitz.idp.federation.matching.*;
import com.identityblitz.idp.flow.common.api.*;
import com.identityblitz.idp.flow.common.model.*;
import com.identityblitz.idp.federation.matching.dynamic.*;
import java.util.function.Consumer;
import java.util.stream.Stream;
import java.util.stream.Collectors;
import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.type.TypeReference;
import com.identityblitz.idp.extensions.types.JsObject;
import com.identityblitz.idp.federation.matching.*;
import com.identityblitz.idp.flow.common.api.HttpFactory;

public class Esia_1Esia extends MatchingBlock {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓federation.matching.dynamic");

@Override public MatchResult match(MatchingContext ctx, List<MatchingUser> users)
→˓{

if (ctx.iteration() == 1) {
return find(ctx, MatchingFilter.empty().eq("uid", "00000").or().eq("uid",

→˓"test@test.ru"));
} else {

//return refine(ctx, Collections.singletonList((users.get(0))));
//return refine(ctx, users);
return matchByLogin(ctx);

}
};

@Override public Tuple2<JsObj, Set<String>> update(JsObj extAttrs, MatchingUser␣
→˓user, Boolean justMatched, HttpFactory httpFactory){

return change(JsObj.empty(), Collections.<String>emptySet());
};

}

2.4. Customization with Java code 219

Blitz Identity Provider, version 5.23

Discovering external account name

A bind procedure allows you to discover the name of a user external account and update the relevant parameter

in the database each time the user logs in though an external identity provider. To do so, use the updateFed-
eratedAccountName function.

Here’s an example of how to use the function in a procedure:

package com.identityblitz.idp.federation.matching.dynamic;

import java.lang.*;
import java.util.*;
import java.text.*;
import java.time.*;
import java.math.*;
import java.security.*;
import javax.crypto.*;
import org.slf4j.LoggerFactory;
import org.slf4j.Logger;
import com.identityblitz.idp.federation.*;
import com.identityblitz.idp.federation.matching.*;
import com.identityblitz.idp.flow.common.api.*;
import com.identityblitz.idp.flow.common.model.*;
import com.identityblitz.idp.federation.matching.dynamic.*;
import java.util.function.Consumer;
import java.util.stream.Stream;
import java.util.stream.Collectors;
import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.type.TypeReference;
import com.identityblitz.idp.extensions.types.JsObject;

import com.identityblitz.idp.federation.matching.*;
import com.identityblitz.idp.flow.common.api.HttpFactory;

public class Esia_1Esia extends MatchingBlock {

private final Logger logger = LoggerFactory.getLogger("com.identityblitz.idp.
→˓federation.matching.dynamic");

@Override public MatchResult match(MatchingContext ctx, List<MatchingUser> users)
→˓{

if (ctx.iteration() == 1) {
//return matchError(ctx, new MatchingError("bad_err_code","bad_err_msg"));
return tryToSearch(ctx);

}

if (users.isEmpty()) {
return matchError(ctx, new MatchingError("error","error"));

}

if (users.size() == 1) {
return matched(ctx, users.get(0));

}

return refine(ctx, users, ctx.extAttrs());
};

private MatchResult tryToSearch(MatchingContext ctx) {
return find(ctx, filter().eq("uid", "test@test.ru"));

}

(continues on next page)

2.4. Customization with Java code 220

Blitz Identity Provider, version 5.23

(continued from previous page)

@Override public Tuple2<JsObj, Set<String>> update(JsObj extAttrs, MatchingUser␣
→˓user, Boolean justMatched, HttpFactory httpFactory){

return change(JsObj.empty(), Collections.<String>emptySet());
};

@Override public boolean isAllowMultiBind() {
return true;

}

@Override public String updateFederatedAccountName(JsObj extAttrs){
if (extAttrs.contains("firstName") && extAttrs.contains("lastName")){

String name = extAttrs.asString("firstName") + " " + extAttrs.asString(
→˓"lastName");

if (extAttrs.contains("middleName")) {
name = name + " " + extAttrs.asString("middleName");

}
return name;

} else {
// don't update federated account name
return super.updateFederatedAccountName(extAttrs);

}
};

}

2.5 Design and UI texts

2.5.1 Login page

Warning: The administrator of the admin console must personally check if JS‐scripts placed on the login

page are correct and make sure that content of the login page is free of vulnerabilities.

In the ”Login page themes” section of the Admin Console, the administrator can customize the appearance set‐

tings for the single sign‐on page. If Blitz Identity Provider user registration and password recovery applications

are used, their appearance will also match the settings for the single sign‐on page appearance.

When you enter the “Appearance” section, a list of customized login page templates is displayed. Each template

is described by:

• template identifier;

• template name;

• applications list;

• description.

By default, a template with the default identifier is created ‐ this is used for all applications connected to Blitz

Identity Provider, as well as for single logout pages.

The default template is edited using a special constructor (more details below).

Also you can:

• create and modify new templates using the builder and assign them to different applications;

• create and modify new templates manually.

2.5. Design and UI texts 221

Blitz Identity Provider, version 5.23

Editing the default template

When opening the default template editing page the following information is displayed about the template itself

(template identifier, template name, description and applications list), as well as the interface of the login page

template builder.

Customizing the appearance of the login page (template properties):

Customizing the appearance of the login page (login page appearance):

Customizing the appearance of the login page (logo):

2.5. Design and UI texts 222

Blitz Identity Provider, version 5.23

Customizing the appearance of the login page (background image):

2.5. Design and UI texts 223

Blitz Identity Provider, version 5.23

Customizing the appearance of the login page (customizing the footer):

2.5. Design and UI texts 224

Blitz Identity Provider, version 5.23

In standard configuration Blitz Identity Provider provides the following features:

• three color themes for the interface elements;

• ability to define the location of the main login form block (identification and authentication, registration,

password recovery);

• ability to upload a company logo to be displayed in the page header;

• choice of a background image (you can choose from 3 standard images in each theme, or you can upload

your own, custom background image);

• login page footer properties.

The figures below show some examples of login pages resulting from the default configuration.

2.5. Design and UI texts 225

Blitz Identity Provider, version 5.23

Creating and modifying new templates using the constructor

Blitz Identity Provider allows you to customize different login pages for the case when a user logs into different

connected applications. To do this, you need to create new login templates ‐ the easiest way to do this is to do

it on the basis of an existing default‐template by clicking the “Copy” button. After that a new template will be

created, which can be edited using the constructor.

In order for the new template to be used when entering a certain application, you should go to the “Applications”

section to edit the required application and select the required page template.

2.5. Design and UI texts 226

Blitz Identity Provider, version 5.23

Creating and modifying new templates in manual mode

You can customize the appearance of the login page to meet your organization’s individual requirements, i.e.

there is no need to be limited to the features of the builder only.

Each template of the login page is a zip archive. Each login page template is a zip archive. All templates are placed

in the directory:

\assets\themes

The easiest way to manually edit the template is to take the following steps:

• create a copy of an existing template (e.g. default‐template) by clicking the “Copy” button in the console;

• go to the template directory;

• unpack the archive with the new created template;

• edit the meta.conf file contained in the archive by removing the builder parameter;

• zip the template files back up, making sure the meta.conf file is in the root directory.

2.5. Design and UI texts 227

Blitz Identity Provider, version 5.23

After completing these steps, you will be able to edit the theme manually. In addition to the standard fields

describing the theme itself, the “Page template” block is available. It allows you to create / modify a template ‐

a text file that is compiled using the Twirl template engine <https://www.playframework.com/documentation/

2.5.x/ScalaTemplates>.

The template must have a signature:

@(headers: Html, fBuilder: FormBuilder, scripts: Html, path: String)(implicit␣
→˓request: RelyingPartyRequest[_], messages: Messages)

You should use following parameters when creating a template:

• headers is the HTML code for the page title, which should be placed in the head tag;

• form ‐ HTML code of the main form, which should be placed in the body tag;

• scripts ‐ HTML code with JavaScript required for the form to work correctly, which should be placed in

the body tag;

• pathAssets ‐ context path to template resources.

The @fBuilder() function adds the code of the main authentication form to the page. The authentication

form (list and composition of fields, location of buttons) is not customizable except for changes implemented by

CSS means. In other words, CSS tools can be used to change the color of individual elements or hide them ‐ to do

this, find the corresponding class in the theme’s CSS file and change its properties.

An example of the basic template is shown below:

@(headers: Html, fBuilder: FormBuilder, scripts: Html, path: String)(implicit␣
→˓request: RelyingPartyRequest[_], messages: Messages)

<!DOCTYPE html>
<html>

<head>
@headers

</head>

<body>
<div id="main">

<section id="content_wrapper">
@fBuilder()

</section>
<div>

<div>
@Html(messages("author.copyright"))

</div>

(continues on next page)

2.5. Design and UI texts 228

https://www.playframework.com/documentation/2.5.x/ScalaTemplates
https://www.playframework.com/documentation/2.5.x/ScalaTemplates

Blitz Identity Provider, version 5.23

(continued from previous page)

</div>
</div>
@scripts

</body>

</html>

When using this template, the login page will look like the one shown in the figure below.

When you design a login page template you have the ability to use resources, like CSS and images.

2.5. Design and UI texts 229

Blitz Identity Provider, version 5.23

To upload them, you should use the “Resources” block of the page appearance, which allows you to upload the

necessary files in a zip archive. To make the corresponding files available, they should be placed in the archive

directory named assets. The required resources can also be manually included in the original zip archive with

the page template.

To enable a language switch in the template body, add the following block:

<div ...>
<section class="language-section">
<div class="language-selector">

<select id="lang-selector"></select>
</div>

</section>
@langSelector()

</div>

2.5.2 User profile

Blitz Identity Provider allows you to change the header and footer logos in the User profile, as well as customize

the User profile color scheme using CSS.

Header logo

To replace the header logo of the User profile, use one of the following methods:

Method #1

Replace the logo-ib_h30.png logo file in the .../assets/public/lib/blitz-common/ directory

with a new file of the same name.

Method #2

1. Put a file with the custom logo (mylogo.png in the example below) into the .../assets/public/
lib/blitz-common/ directory.

2. Open the.../assets/public/lib/blitz-profile/stylesheets/custom.min.css file.

sudo vim /usr/share/identityblitz/blitz-config/assets/public/lib/blitz-profile/
→˓stylesheets/custom.min.css

3. Specify the URL path to the new file.

Attention: For the path to the .../assets/public/lib/blitz-common/ directory, use

https://<domain> /blitz/assets/img/.

2.5. Design and UI texts 230

Blitz Identity Provider, version 5.23

:root{
--navbar-branding-img: url(https://<domain>/blitz/login/assets/img/mylogo.

→˓png);
...

}

Tip: For the logo, you can also use a file available on a public URL.

Footer logo

To change the logo in the footer of the User profile, replace the logo-bip.png logo file in the .../assets/
public/lib/blitz-common/ directory with a new file of the same name.

Color scheme customization

Changing the color scheme is conducted in the .../assets/public/lib/blitz-profile/
stylesheets/custom.min.css file.

:root{
--profile-color-accent:#00bde5;
--profile-color-border-primary:#ddd;
--profile-color-border:#ddd;
--profile-color-button:#f1f1f1;
--profile-color-href-hover:#1d6fa5;
--profile-color-href:#3498db;
--profile-color-outline:#ddd;
--profile-color-primary:#3498db;
--profile-color-text-button:#666;
--profile-color-text-light:#fff;
--profile-color-text-primary:#3498db;

}

2.5.3 Multilanguage support

Blitz Identity Provider web interface supports multi‐language. Two languages are provided by default ‐ Russian

and English.

By default, the interface is displayed to the user in the language that corresponds to their system language in the

OS and their preferred language in the browser. In this case, you can switch the language by changing the primary

input language (the language in which web pages are displayed) in the browser you are using. For example, to

change the language in the Chrome browser, follow the steps:

• go to the browser settings (chrome://settings/);

• select Show additional settings;

• click on the Change language preferences button;

• move the desired language to the first place in the list.

2.5. Design and UI texts 231

Blitz Identity Provider, version 5.23

To change the language in Firefox browser, you need to follow the steps:

• go to the browser settings (about:preferences);

• select the General section of the settings;

• in the Languages subsection, click on the Select button;

• move the desired language to the first place in the list.

2.5. Design and UI texts 232

Blitz Identity Provider, version 5.23

Additionally, it is possible to configure the language using the blitz.conf configuration file. To do this, edit

the language setting section blitz.prod.local.idp.lang with the following parameters:

• languages – list of available languages. The first language in the list is considered to be the default

language;

• portal-lang-cookie – name (name) and setting domain (domain) of the cookie with the current

portal language (optional). If a portal cookie is set, the language change in Blitz Identity Provider is stored

in the specified cookie;

• ignore-browser – whether or not the browser language ignore mode is turned off;

• lang-variants – list of identifiers for special sets of strings for individual applications (page 241).

The example of configuration file excerpt:

"lang" : {
"ignore-browser" : true,
"languages" : [
"ru",
"en"

],
"lang-variants": ["special1", "special2"],
"portal-lang-cookie" : {
"domain" : "domain.com",
"name" : "blitzlng"

}
}

Thus, for example, if the use of the English interface language is not required, it can be removed from the lan-
guages parameter.

2.5. Design and UI texts 233

Blitz Identity Provider, version 5.23

2.5.4 Interface text settings

Web interface texts

Blitz Identity Provider allows you to change text strings used in the system interface. To do this, you need to edit

the messages file located in the /custom_messages/ directory by adding a string like “parameter=value”,

where parameter is the text string identifier and value is the required text.

All text strings used by Blitz Identity Provider by default are saved in the messages.zip archive included with

the software.

For example, the following string is responsible for the text in the registration form that contains URL to the User

agreement:

reg.page.reg.action.agreement=By clicking «Register» you
→˓agree with the с Terms of Use

The file must be saved in UTF‐8 encoding in order to display correctly.

If you need to change the English language, add the messages.en file to the specified directory and change

the necessary files in it.

If you want to use the @ character in texts, you must enter it twice.

Email and SMS templates

Email templates are text strings saved in the same way as regular strings in the web interface. They are modified

in the same way.

The unified format of message codes is used, which has the following form:

message.$[группа_сообщений].$[тип_сообщения].$[вариация].$[канал].$[часть]

Following message groups are used:

• notif ‐ for notifications;

• reg ‐ for interaction with the user during registration;

• recovery ‐ for interaction with the user when restoring access;

• auth ‐ for interaction with the user during authentication;

• profile ‐ for interaction with the user in the User profile;

• api ‐ for interaction with the user when using API.

Message types from different groups:

notif

login_unknown_device

User notification about the login from unknown device.

Parameters:

• device ‐ code of the device;

• device.msg ‐ name of the device computed with msg(audit.device.$[device]);

• browser ‐ user browser;

• user session attributes;

2.5. Design and UI texts 234

Blitz Identity Provider, version 5.23

• ua.name ‐ device name;

• app.id ‐ application identifier;

• app.name ‐ application name;

• ip – IP‐address;

• ip.country ‐ country;

• ip.state ‐ region;

• ip.city ‐ city;

• ip.lat ‐ latitude;

• ip.lng ‐ longitude;

• ip.radius ‐ radius of the neighborhood;

• device.type ‐ device type;

• device.mkey ‐ collected key for messages, formation rule: s"$deviceType.$osName.$osVer";

• os.name ‐ operating system name;

• os.ver ‐ operating system version;

• os.mkey ‐ collected key for messages, formation rule: s”$osName.$osVer”;

• event.time is the time of the event (in unixtime).

You can use the following formatting features in a message template:

• $[<ATTR>&dic(<MSG_KEY_PREFIX>,<PARAM_SUBSTITUTION>)] ‐ get value from string;

• $[<ATTR>&formatUnixTime(dd MMMM YYYYY year,ru,GMT)] ‐ date and time formatting,

where dd MMMM YYYYY ‐ template in SimpleDateFormat format, ru ‐ locale (optional), GMT ‐ time‐

zone (optional).

In the template, you can set conditions for the presence of parameters. The following example allows you to

display the word City and the value from the parameter ip.city if available, if ip.city is missing, then

nothing will be shown:

$[ip.city+Город:]$[ip.city-]

Tip: For the example to work, create and activate the login procedure extracting user’s geodata (page 210).

link_social_network

User notification about linking to social network.

Parameters:

• fp.humanReadableName ‐ name of the external identity provider;

• user attributes.

2.5. Design and UI texts 235

Blitz Identity Provider, version 5.23

change_pwd

User notification about password change.

Parameters:

• user attributes.

changed_pwd_to_object

User notification about password change in dependent account.

Parameters:

• attributes of the dependent account with obj prefix.

access_recovery

User notification about password recovery

Parameters:

• user attributes.

access_recovery_by_object

User notification about password recovery in dependent account.

Parameters:

• attributes of the dependent account with obj prefix.

set_2factor_auth

User notification of the assignment of the second authentication factor.

Parameters:

• method ‐ authentication method code;

• method.msg ‐ authentication method name computed by the msg(message.method.name.
$[method] string;

• user attributes.

granted_access_to

Subject notification about granted access to the object.

Parameters:

• blitz_right ‐ access rights code;

• subject attributes;

• object attributes with the obj prefix.

2.5. Design and UI texts 236

Blitz Identity Provider, version 5.23

granted_access_on

Object notification about granted access to it.

Parameters:

• blitz_right ‐ access rights code;

• subject attributes;

• object attributes with the obj prefix.

revoked_access_to

Subject notification about revoked access to the object.

Parameters:

• blitz_right ‐ access rights code;

• subject attributes;

• object attributes with the obj prefix.

revoked_access_on

Object notification about revoked access to it.

Parameters:

• blitz_right ‐ access rights code;

• subject attributes;

• object attributes with the obj prefix.

on_registration

User notification about registration of his/her account.

Parameters:

• _entryPoint_ ‐ registration channel;

• _appId_ – application;

• _requesterId_ – application;

• user attributes.

Example line:

message.notif.login_unknown_device.email.body=Уважаемый пользователь!

Мы␣
→˓обнаружили, что вы вошли в систему с нового устройства $[event.time&
→˓formatUnixTime(dd MMMM YYYY г.,ru,GMT)]:
$[device.mkey&dic(dics.devices,os.
→˓ver)], браузер $[ua.name&dic(dics.browsers)]
Если вы не совершали это␣
→˓действие, обратитесь к администратору.

2.5. Design and UI texts 237

Blitz Identity Provider, version 5.23

reg

vrf_code

Sending contact confirmation code during registration.

Parameters:

• code – confirmation code;

• link– confirmation link (only for email channel);

• req.ip – IP‐address;

• req.userAgent ‐ userAgent of the user;

• cfg.domain ‐ domain;

• user attributes from the registration context with the prefix attrs.

set_pwd_link

Sending the link to change password during registration (only for email channel).

Parameters:

• link ‐ link to password change page;

• req.ip – IP‐address;

• req.userAgent ‐ userAgent of the user;

• cfg.domain ‐ domain;

• user attributes from the registration context with the prefix attrs.

generated_pwd

Sending the assigned registration password (only for SMS channel).

Parameters:

• pwd ‐ generated password;

• req.ip – IP‐address;

• req.userAgent ‐ userAgent of the user;

• cfg.domain ‐ domain attributes of the user from the registration context with the prefix attrs.

recovery

vrf_code

Sending contact confirmation code during access recovery.

Parameters:

• code – confirmation code;

• link– confirmation link (only for email channel).

2.5. Design and UI texts 238

Blitz Identity Provider, version 5.23

auth

vrf_code

Sending mobile number confirmation code (channels: SMS/push).

Parameters:

• code – confirmation code.

profile

vrf_code

Sending confirmation code if it was changed in User profile.

Parameters:

• attr.msg ‐ name of the attribute in the profile form;

• attr – attribute code;

• link– confirmation link (only for email channel);

• code – confirmation code.

api

vrf_code

Variations:

• $attr.$rpId – separately for current application and attribute;

• $attr ‐ separately for this attribute.

Sending contact confirmation code via API

Parameters:

• code – confirmation code;

• link– confirmation link (only for email channel);

• attr.value ‐ new contact (e‐mail or cell phone);

• attr – contact attribute code.

Variations allow you to specify variations in addition to the basic message template (for example, a separate tem‐

plate by application). The presence of a variation is checked by the basic template with the message text (body
part). If the variation of the main template is described in the system, all other templates (email.subject,
email.from, push.title) will be applied with the same variation. If there are multiple variations, they will

be checked in some specified order (usually from more detail to less detail). If there are no variations, the base

template will be used. In most cases there are no variations.

The following channels are available:

• sms ‐ sending messages by SMS. There are no parts for this channel;

• email ‐ sending messages by email. Parts for this channel:

– subject ‐ subject;

– body ‐ main content;

– from ‐ sender (optional);

• push ‐ sending push notifications. Parts for this channel:

2.5. Design and UI texts 239

Blitz Identity Provider, version 5.23

– title ‐ subject;

– body ‐ main content.

Example keys for login_unknown_devicemessages type:

• message.notif.login_unknown_device.email.subject ‐ subject of the email message;

• message.notif.login_unknown_device.email.body ‐ text of the email message;

• message.notif.login_unknown_device.email.from ‐ sender of the email message;

• message.notif.login_unknown_device.sms ‐ SMS text.

Device and browser names

In Blitz Identity Provider you can customize the names of devices (operating systems) and browsers with exact

version. To do this, you need to create lines in the custom_messages directory in the messages file whose

names correspond to the following patterns:

• for browsers ‐ dics.browsers.<name>. The following browsers are supported for substitution into

<name>: Firefox, Opera, Chrome, Safari, IE, Edge, Yandex, Sputnik, unknown. The text of
the string receives the browser version as a substitution string {0}.

• for devices (operating systems) ‐ dics.devices.<typ>.<os>.<ver>. As <typ> you can specify:

kindle, mobile, tablet, iphone, windowsPhone, pc, ipad, playStation, unknown. As

<os> you can specify: Android, iOS, WindowsPhone, Windows, macOS, Linux, ChromeOS, un-
known. If no private string is defined for<os> and<ver>, themore general string is taken. The operating

system version is passed into the string text as a {0} substitution string.

Example lines:

dics.browsers.Firefox=Firefox Browser {0}
dics.browsers.Opera=Opera {0}
dics.browsers.Chrome=Google Chrome {0}
dics.browsers.Safari=Safari {0}
dics.browsers.IE=Internet Explorer
dics.browsers.Edge=Microsoft Edge {0}
dics.devices.mobile=Mobile device
dics.devices.mobile.Android=Android
dics.devices.mobile.Android.10=Android 10
dics.devices.mobile.Android.9=Android 9
dics.devices.tablet=Tablet
dics.devices.iphone=iPhone
dics.devices.iphone.iOS.14=iPhone (iOS {0})
dics.devices.pc.macOS=macOS {0}
dics.devices.pc.macOS.13=macOS Ventura {0}
dics.devices.pc.macOS.12=macOS Monterey {0}
dics.devices.pc.macOS.11=macOS Big Sur {0}
dics.devices.pc.macOS.10.15=macOS Catalina {0}
dics.devices.pc.macOS.10.14=macOS Mojave {0}
dics.devices.pc.macOS.10.13=macOS High Sierra {0}
dics.devices.pc.macOS.10.12=macOS Sierra {0}
dics.devices.pc.Windows.8=Windows 8
dics.devices.pc.Windows.10=Windows 10
dics.devices.pc.Windows.11=Windows 11

2.5. Design and UI texts 240

Blitz Identity Provider, version 5.23

Messages for different applications

It is possible to modify all text messages and templates in order to use specific texts/templates for different

applications. For example, you can brand emails sent during registration on different websites connected to the

same Blitz Identity Provider installation, or provide a link to download different resource rules.

To bind a set of templates to a specific application, follow the steps:

1. Create a text file copy that should be used only for this application. To do this, create a text filemessages.
ru-special1 (messages.en-special1) in the custom_messages/ directory for this applica‐

tion, in which special1 is a sequence of 5‐8 characters (both numbers and letters of the Latin alphabet

are allowed).

2. Edit the messages.ru-special1 (messages.en-special1) file to add (page 234)

application‐specific strings. All other strings will be taken from the default string database.

3. Edit the blitz.conf file as follows:

• in the blitz.prod.local.idp.apps section of the file, find the application ID that should use

the created template file;

• add a parameter to the application settings in the ”lang-variant” : “special1” format, in

which special1 is the character sequence used to label the template.

Example:

"demo-application" : {
"domain" : "http://testdomain.ru",
"lang-variant" : "special1",
"name" : "test",
"oauth" : {

"autoConsent" : false,
"clientSecret" : "1234567890",
"defaultScopes" : [],
"enabled" : true,
"redirectUriPrefixes" : [

"http://localhost"
]

},
"theme" : "default"

}

4. In the blitz.prod.local.idp.lang ‐> lang-variant setting, register all character sequences

used to label various applications (special1, special2).

After that, a specially created message file will be used when logging into this application.

Auxiliary application messages (pipes)

In Blitz Identity Provider, you can configure the messages of the helper application that issues the security key

(Passkey, WebAuthn, FIDO2) at user login. You can configure different message texts depending on the user’s

devices (operating systems). To do this, create strings in the custom_messages directory in the messages
file whose names correspond to the following patterns:

• pipes.conf.webAuthn.addKey.<message-path>.<device-type>.<os>;

• login.outside.flow.error.internal.webAuthn.addKey.<device-type>.<os>.

As <message-path> the string name is specified (see example below). The <device-type> specifies the

device type: mobile, tablet, iphone, pc, ipad. As <os> you can specify: Android, iOS, Windows,
macOS, Linux, ChromeOS. If no private string is defined for <device-type> and <os>, the more general

string is taken.

Example lines:

2.5. Design and UI texts 241

Blitz Identity Provider, version 5.23

pipes.conf.webAuthn.addKey.page.title.pc.macOS=Log in with Touch ID
pipes.conf.webAuthn.addKey.head.title.pc.macOS=Log in with Touch ID
pipes.conf.webAuthn.addKey.info.pc.macOS=Use Touch ID or MacOS password to log in␣
→˓to applications?
pipes.conf.webAuthn.addKey.finishInfo.pc.macOS=Log-in with Touch ID is configured␣
→˓for your account. Click Next
pipes.conf.webAuthn.addKey.name.pc.macOS=Touch ID on Mac
login.outside.flow.error.internal.webAuthn.addKey.pc.macOS=Error when configuring␣
→˓log-in with Touch ID

pipes.conf.webAuthn.addKey.page.title.pc.Windows=Log in with Windows Hello
pipes.conf.webAuthn.addKey.head.title.pc.Windows=Log in with Windows Hello
pipes.conf.webAuthn.addKey.info.pc.Windows=Use PIN, facial recognition, or a␣
→˓fingerprint to log in to applications?
pipes.conf.webAuthn.addKey.finishInfo.pc.Windows=Log-in with Windows Hello is␣
→˓configured for your account. Click Next
pipes.conf.webAuthn.addKey.name.pc.Windows=Windows Hello
login.outside.flow.error.internal.webAuthn.addKey.pc.Windows=Error when␣
→˓configuring log-in with Windows Hello

pipes.conf.webAuthn.addKey.page.title.iphone.iOS=Log in with Face ID
pipes.conf.webAuthn.addKey.head.title.iphone.iOS=Log in with Face ID
pipes.conf.webAuthn.addKey.info.iphone.iOS=Use Face ID or Touch ID on the phone to␣
→˓log in to applications?
pipes.conf.webAuthn.addKey.finishInfo.iphone.iOS=Log-in with Face ID is configured␣
→˓for your account. Click Next
pipes.conf.webAuthn.addKey.name.iphone.iOS=Face ID на iPhone
login.outside.flow.error.internal.webAuthn.addKey.iphone.iOS=Error when␣
→˓configuring log-in with Face ID

pipes.conf.webAuthn.addKey.page.title.ipad.iOS=Log in with Touch ID
pipes.conf.webAuthn.addKey.head.title.ipad.iOS=Log in with Touch ID
pipes.conf.webAuthn.addKey.info.ipad.iOS=Use Touch ID on iPad to log in to␣
→˓applications?
pipes.conf.webAuthn.addKey.finishInfo.ipad.iOS=Log-in with Touch ID is configured␣
→˓for your account. Click Next
pipes.conf.webAuthn.addKey.name.ipad.iOS=Touch ID on iPad
login.outside.flow.error.internal.webAuthn.addKey.ipad.iOS=Error when configuring␣
→˓log-in with Touch ID

pipes.conf.webAuthn.addKey.page.title.mobile.Android=Log in with facial␣
→˓recognition or fingerprint
pipes.conf.webAuthn.addKey.head.title.mobile.Android=Log in with facial␣
→˓recognition or fingerprint
pipes.conf.webAuthn.addKey.info.mobile.Android=Use facial recognition or␣
→˓fingerprint to log in to applications?
pipes.conf.webAuthn.addKey.finishInfo.mobile.Android=Log-in with facial␣
→˓recognition or fingerprint is configured. Click Next
pipes.conf.webAuthn.addKey.name.mobile.Android=Smart Lock on Android
login.outside.flow.error.internal.webAuthn.addKey.mobile.Android=Error when␣
→˓configuring log-in with facial recognition or fingerprint

pipes.conf.webAuthn.addKey.page.title=Log in with security key
pipes.conf.webAuthn.addKey.head.title=Log in with security key
pipes.conf.webAuthn.addKey.info=Use the FIDO2 security key to log in to␣
→˓applications?
pipes.conf.webAuthn.addKey.finishInfo=Log-in with security key is configured for␣
→˓your account. Click Next
pipes.conf.webAuthn.addKey.name=FIDO2

In Blitz Identity Provider, you can configure texts for an auxiliary application that shows a message to the user

while login to the application. To do this, define in the custom_messages directory in the messages file

2.5. Design and UI texts 242

Blitz Identity Provider, version 5.23

the strings for the customized blitz.prod.local.idp.built-in-pipes.info applications with their
{id} of the helper application.

Example lines:

• pipes.info.head.title.{id}: tab name

• pipes.info.page.title.{id}: title of the auxiliary application

• pipes.info.message.{id}: message text

• pipes.info.read.{id}: button name (for auxiliary applications with the “news” type)

• pipes.info.agree.{id}: the name of the first button (for auxiliary applications with the “agree‐

ment” type)

• pipes.info.disagree.{id}: name of the second button (for auxiliary applications with the “agree‐

ment” type)

You can customize texts in Blitz Identity Provider for a helper application that asks the user to select a value

from a list at user’s login and stores the result of the selection in an account attribute. To do this, define in the

custom_messages directory in the messages file the strings for the configured blitz.prod.local.
idp.built-in-pipes.choice applications with their {id} of the helper application.

Example lines:

• pipes.choice.head.title.{id}: tab name

• pipes.choice.page.title.{id}: title of the auxiliary application

• pipes.choice.info.{id}: text of the information under the title

• pipes.choice.button.{id}.{choiceId}: text on the selection button

• pipes.choice.skip: text on the skip button

You can customize texts in Blitz Identity Provider for an auxiliary application that asks the user to enter an attribute

value at application login. To do this, define lines in thecustom_messages directory in themessages file that
correspond to the following pattern ‐ pipes.act.attr. <message-path>.common.<attr-name>.
The string name is specified as <message-path> (see below for an example). The attribute name is specified

as <attr-name>.

Example strings (in case the family_name attribute is filled):

pipes.act.attr.page.title.common.family_name=Confirm your last name
pipes.act.attr.head.title.common.family_name=Confirm your last name
pipes.act.attr.info.confirm.common.family_name=Is this your last name?
If so,␣
→˓click Confirm.
pipes.act.attr.info.enter.common.family_name=Your account doesn't contain the last␣
→˓name.
Specify it and click Confirm.
pipes.act.attr.label.common.family_name=Last name
pipes.act.attr.msg.required.msg.common.surname=Enter your last name

2.5.5 Logos for external provider log‐in buttons

In Blitz Identity Provider, you can change the logos displayed on the login buttons using external identity providers

(social networks) on the login page and the external identity provider bind buttons in the User profile.

To customize, you must create lines in the custom_messages directory in the messages file whose names

correspond to the following patterns:

• for the login page is meth-logo.${type}.${name}

• for User profile ‐ social-icon.${type}.${name}

2.5. Design and UI texts 243

Blitz Identity Provider, version 5.23

${type} specifies the type of external identity provider, ${name} specifies the name of the identity provider.

The values are taken from the настроек (page 109).

The string values specify the <icon class> names assigned to buttons.

Example lines:

social-icon.saml.demo-idp=saml-demo
meth-logo.saml.demo-idp=meth-saml-demo

2.6 Configuration file settings

2.6.1 Configuration file list

Blitz Identity Provider settings, except for blitz-keeper application, are located in the directory /usr/
share/identityblitz/blitz-config.

List of subdirectories and files:

• apps/ – settings of connected applications (page 277);

• assets/ ‐ user interface strings. See:

– Using and updating the plug‐in (page 73),

– External identity providers (page 109),

– Login page (page 221);

• custom_messages/ ‐ user interface strings (page 234);

• devices/ ‐ auxiliary directories for handling HOTP and TOTP device loading (page 93);

• /dynamic/idstore/ – custom procedures for customizing the logic of operations with data storages

(page 215);

• flows/ ‐ login procedures (page 191);

• saml/ ‐ SAML settings (page 167);

• simple/ ‐ settings for connecting applications using Simple protocol (page 157);

• token_exchange/rules/* ‐ access token exchange rules settings (page 451);

• blitz.conf is themain configuration file (page 245);

• boot.conf ‐ configuration file path settings;

• console.conf ‐ admin console settings (page 279);

• credentials ‐ admin console administrator user profiles (page 281);

• play.conf – application server settings. See:

– installation of the admin console blitz-console in General installation instructions (page 14),

– Blitz Identity Provider domain (page 262);

• logback.xml ‐ event and error logging settings.

Most settings are set using the admin console. A number of settings require editing configuration files yourself.

Such settings are described in the following subsections.

The blitz‐keeper configuration file for the blitz‐keeper application is located in /etc/blitz-keeper. The

following configuration files are used:

• blitz-keeper.conf ‐ security gateway settings (page 451);

• blitz-keeper-log4j.xml ‐ event and error logging settings.

2.6. Configuration file settings 244

Blitz Identity Provider, version 5.23

2.6.2 Settings in blitz.conf file

The main configuration file blitz.conf consists of the following configuration blocks with the following list of

purposes:

• blitz.prod.local.idp.apps ‐ settings of connected apps;

• blitz.prod.local.idp.apps-source – location of the connected application settings;

• blitz.prod.local.idp.audit ‐ security event logging settings;

• blitz.prod.local.idp.captcha ‐ settings for interaction with the CAPTCHA service;

• blitz.prod.local.idp.events ‐ settings for sending events to the queue;

• blitz.prod.local.idp.federation ‐ external identity provider settings;

• blitz.prod.local.idp.flexible-flows ‐ login procedures settings;

• blitz.prod.local.idp.id-attrs ‐ attribute settings;

• blitz.prod.local.idp.id-stores ‐ attribute storage settings in the credential storage;

• blitz.prod.local.idp.internal-store ‐ DBMS connection settings;

• blitz.prod.local.idp.keystore ‐ key store access settings;

• blitz.prod.local.idp.lang – Blitz Identity Provider language settings;

• blitz.prod.local.idp.license is the Blitz Idenity Provider license key;

• blitz.prod.local.idp.logger ‐ logger settings;

• blitz.prod.local.idp.login ‐ settings for authentication methods;

• blitz.prod.local.idp.logout ‐ settings of the logout process;

• blitz.prod.local.idp.messages ‐ message file settings;

• blitz.prod.local.idp.messaging ‐ settings for invoking messaging services;

• blitz.prod.local.idp.net ‐ network settings;

• blitz.prod.local.idp.notifier ‐ event notification settings;

• blitz.prod.local.idp.oauth ‐ scopes settings;

• blitz.prod.local.idp.password-policy ‐ password policy settings;

• blitz.prod.local.idp.play ‐ Blitz Identity Provider application server settings;

• blitz.prod.local.idp.provisioning ‐ user registration and forgotten password recovery ser‐

vices settings;

• blitz.prod.local.idp.realms ‐ Application ID encryption settings (privacy domains);

• blitz.prod.local.idp.rights – settings of the access rights;

• blitz.prod.local.idp.saml ‐ SAML settings;

• blitz.prod.local.idp.stores ‐ primary DBMS settings;

• blitz.prod.local.idp.tasks ‐ settings of the task processing method;

• blitz.prod.local.idp.user-profile ‐ user profile settings;

• blitz.prod.local.idp.webAuthn ‐ security key settings;

• home ‐ path to Blitz Identity Provider installation directory on the application server.

The following is a description of the settings that are inaccessible from the admin console, they can be configured

by editing the blitz.conf configuration file.

2.6. Configuration file settings 245

Blitz Identity Provider, version 5.23

Logins and passwords

Number of password verifications

You can set a limit on the number of simultaneous password authentications with the same user login in a period

of time. The default setting is that Blitz Identity Provider allows no more than 3 authentications to the same login

within 600ms. To adjust the default settings, youmust add the following block in theblitz.conf configuration
file to the blitz.prod.local.idp.login.methods.password section:

"throughput": {
"limit": 3,
"window": 600

}

Password change at login

If Blitz Identity Provider is connected to a writable account storage (the storage is not in read‐only mode), then

when a user logs in with an account from that storage, if the password policy requires the user to change their

password, the user will be presented with a password change screen (asking them to enter their old and new

password). Sometimes displaying the password change screen at login is not desirable. You can disable the

screen by setting the following block of settings in the blitz.conf configuration file under blitz.prod.
local.idp.login.methods.password:

"changePasswordMode": {
"type": "except_for",
"idStores":["ldap1","ldap2"]

}

The idStores setting should list the identifiers of those account storages for which the user should not be

prompted to change their password at login.

System names of login and password fields

By default, Blitz Identity Provider names the login and password fieldswith the identifierslogin andpassword
on the login page. When implementing Blitz Identity Provider when migrating from an existing login system that

used different field names, there may be a requirement that you need to keep the previously used field names

in Blitz Identity Provider. This may be useful because some browsers that have saved user logins and passwords

and use them for auto‐substitution will be able to continue to auto‐substitute the saved values even when the

login system switches to using Blitz Identity Provider, as long as the domain of the login page and the name of the

fields on the login page are preserved.

To set the required login and password field names, the following settings must be added to the blitz.prod.
local.idp.password settings block:

• loginInputName ‐ ID of the login input field on the login page;

• passwordInputName ‐ ID of the password input field on the login page.

Example of configuration:

"password" : {
…
"loginInputName" : "j_username",
"passwordInputName" : "j_password",
…

}

2.6. Configuration file settings 246

Blitz Identity Provider, version 5.23

Attributes

External attribute validator

If the capabilities provided by regular expression input value conversion rules (page 44) are not sufficient to im‐

plement the required business logic for validating the acceptability of an attribute value, the use of an external

validator can be programmed and configured for the attribute.

To do this, you need to create a program with an external validator and build it into a JAR file.

The created JAR file should be copied to the servers with Blitz Identity Provider applications. The JAR file location

address should be specified in the Java option extensionsDir.

Example:

export JAVA_OPTS="${JAVA_OPTS} -DextensionsDir=/usr/share/identityblitz/extensions"

In theblitz.prod.local.idp.id-attrs.attrsMeta attribute settings block, youmust addvalida-
tors block in the source block to the attribute description block for which you want to enable validation via

an external validator:

• in the className setting, specify the address of the Java class that implements the AttributeVal-
idator interface from the Blitz JDK;

• in the conf block, specify the settings to be passed to the validator.

Example of configuration:

"id-attrs" : {
"attrsMeta" : [

{
{

"class" : "verified-mobile",
"format" : "string",
"name" : "phone_number",
"realmed" : false,
"required" : false,
"searchable" : true,
"source" : {

"validators" : [
{

"className" : "validator.MobileValidator",
"conf" : {

"conf1" : "value1"
}

}
],
"type" : "idStore"

},
"unique" : false

},
…

}
]

}

2.6. Configuration file settings 247

Blitz Identity Provider, version 5.23

Attribute translator

You can associate a translator with an attribute that describes the attribute’s conversion rules for reading from

the LDAP directory and writing to the LDAP directory. In the attribute storage settings block in the blitz.
prod.local.idp.id-stores.list.mappingRules section of the attribute matching settings, in the

attribute description block for which you want to enable a translator, you must add the translator block with

the className setting, in which you must specify the name of the Java class that implements the translation

algorithm. The Java class must implement the implementation of the LdapAttributeTranslator interface from the

Blitz JDK.

For some attributes from Active Directory, Blitz Identity Provider provides built‐in Java classes:

• If you need to configure a translator for the objectGUID attribute from Active Directory so that this

attribute is represented as a GUID string rather than in byte form, use the com.identityblitz.idp.
store.ldap.core.translator.ObjectGUIDTranslator Java class.

Example of configuration:

"id-stores" : {
"list" : [

{
…
"mappingRules" : [

…
{

"name" : "objectGUID",
"storeAttr" : "objectGUID",
"translator" : {

"className" :
"com.identityblitz.idp.store.ldap.core.translator.

→˓ObjectGUIDTranslator"
}

],
},
…

]
}

• If you need to configure a translator for the objectSID attribute to convert it to the string form,

use the“com.identityblitz.idp.store.ldap.core.translator.ObjectSIDTranslator“ Java class. The converted at‐

tribute is searchable, but the LIKE operation is not supported. It cannot be modified or set at creation.

Example of configuration:

"id-stores" : {
"list" : [

{
…
"mappingRules" : [

…
{

"name": "objectSID",
"storeAttr": "objectSID",
"translator": {

"className": "com.identityblitz.idp.store.ldap.core.
→˓translator.ObjectSIDTranslator"

}
}

],
},
…

(continues on next page)

2.6. Configuration file settings 248

Blitz Identity Provider, version 5.23

(continued from previous page)

]
}

Using a self‐developed translator, it is necessary to create a program with an external translator and assemble it

into a JAR file.

The created JAR file should be copied to the servers with Blitz Identity Provider applications. The JAR file location

address should be specified in the Java option extensionsDir.

Example:

export JAVA_OPTS="${JAVA_OPTS} -DextensionsDir=/usr/share/identityblitz/extensions"

CAPTCHA

To display the CAPTCHA service for logins and passwords you need to create a configuration file and load the

required files (CSS and JS).

Changes in the configuration file must be done:

• in the blitz.prod.local.idp.captcha settings block. An example of a setting entry is shown

below:

"captcha" : {
"exampleCaptcha": {

"operations": [
{

"call": {
"headers": [

"accept:application/json",
"Authorization:Bearer ${cfg.bearerToken}"

],
"method": "post",
"url": "https://captcha.example.com/captcha/1.0.0/check?

→˓uniqueFormHash=${ste.uniqueFormHash}&code=${ocp.code}&options[system]=${cfg.
→˓system}&options[token]=${cfg.token}"

},
"check": {

"errRegExp": {},
"okRegExp": {

"error": "0"
}

},
"name": "check",
"newState": {

"uniqueFormHash": "${rsp.result.uniqueFormHash-}"
}

},
{

"call": {
"headers": [

"accept:application/json",
"Authorization:Bearer ${cfg.bearerToken}"

],
"method": "get",
"url": "https://captcha.example.com/captcha/1.0.0/create?type=$

→˓{cfg.type}&options[system]=${cfg.system}&options[token]=${cfg.token}"
},
"name": "create",

(continues on next page)

2.6. Configuration file settings 249

Blitz Identity Provider, version 5.23

(continued from previous page)

"newState": {
"uniqueFormHash": "${rsp.result.uniqueFormHash-}"

}
},
{

"call": {
"headers": [

"accept:application/json",
"Authorization:Bearer ${cfg.bearerToken}"

],
"method": "post",
"url": "https://captcha.example.com/captcha/1.0.0/refresh?

→˓uniqueFormHash=${ste.uniqueFormHash}&type=${cfg.type}&options[system]=${cfg.
→˓system}&options[token]=${cfg.token}"

},
"name": "refresh"

}
],
"plainParams": {

"type": "arithmetic"
},
"secureParams": {

"bearerToken": "<access_token>",
"system": "<system_id>",
"token": "<system_token>"

}
}

}

This block contains parameters for calling three methods of CAPTCHA service (create, check, refresh),
as well as secret parameters ‐ access token (bearerToken), system identifier (system), and system token

(token).

• in the block of login settings blitz.prod.local.idp.password. Inside this block add captcha
block and configure it according to the example:

"captcha" : {
"enabled": true,
"initJs": "require(['https://demo.reaxoft.ru/themes/default/assets/js/

→˓passwordCaptcha.js', 'captcha-conf'], function(captcha, conf){ captcha(conf,
→˓'https://demo.reaxoft.ru/themes/default/assets/css/passwordCaptcha.css');});",
"mode": {
"type": "always_on"

},
"name": "exampleCaptcha"

}

In this block you should configure the following parameters:

• enabled ‐ indicates whether CAPTCHA is enabled or not (true/false);

• initJs ‐ contains links to the Javascript and CSS loaded on the login page and required to display/invoke

CAPTCHA on login page;

• mode ‐ CAPTCHA display mode, the following modes are provided:

– always_on ‐ CAPTCHA is always displayed;

– on_header ‐ CAPTCHA is displayed if the request has the header specified in the name parameter

and the value specified in the value parameter.

– by_brute_force_protection ‐ A CAPTCHA is displayed if Blitz Identity Provider has detected

password brute force on a specific account or mass password brute force on all accounts.

2.6. Configuration file settings 250

Blitz Identity Provider, version 5.23

When using by_brute_force_protectionmode, it is required to additionally create bruteForcePro-
tection settings block with the following settings in blitz.prod.local.idp.password block:

• disabled ‐ whether the protection is disabled or not (true/false);

• captcha ‐ whether to use the CAPTCHA test when the protection is triggered (true/false);

• delay ‐ login delay time in seconds (applies if CAPTCHA usage is disabled);

• blocksystem in thethresholds setting ‐ if system‐level protection is required (protection against brute

force on different logins). The settings are:

– minAttemptsToActivate ‐ minimum number of passed inputs to activate the protection mech‐

anism based on the system statistics (100 inputs by default);

– timeWindowInMin ‐ time window for collecting statistics on the ratio of successful and unsuccess‐

ful inputs in minutes, must be even (100 minutes by default);

– failedAttemptsPercent, the turnOff setting is the threshold for turning off automatic pro‐

tection, in percent;

– failedAttemptsPercent, the turnOn setting is the threshold for turning on automatic pro‐

tection, in percent.

– forced ‐ enable forced protection for all (true/false).

• system block in the thresholds setting ‐ if protection at the level of individual users is required (pro‐

tection against password mining for a particular user). The settings are specified:

– ttlInSec ‐ the period forwhich the counter of unsuccessful logins by user is accumulated in seconds

(default is 3600 seconds);

– failedAttempts, the turnOn setting is the number of invalid logins per period after which pro‐

tection will be enabled for the account.

Example of bruteForceProtection block settings (only user‐level protection is enabled):

"bruteForceProtection" : {
"delay" : 0,
"captcha" : true,
"disabled" : false,
"thresholds" : {

"user" : {
"failedAttempts" : {

"turnOn" : 5
},
"ttlInSec" : 3600

}
}

}

Example of bruteForceProtection settings (user‐level and system‐level protection enabled):

"bruteForceProtection" : {
"disabled": false,
"delay" : 0,
"captcha" : true,
"thresholds" : {

"system" : {
"minAttemptsToActivate": 1000,
"timeWindowInMin": 180,
"failedAttemptsPercent" : {

"turnOff" : 20,
"turnOn" : 30

},
"forced" : false

(continues on next page)

2.6. Configuration file settings 251

Blitz Identity Provider, version 5.23

(continued from previous page)

},
"user" : {

"ttlInSec": 3600,
"failedAttempts" : {

"turnOn" : 5
}

}
}

}

If you use Google’s reCAPTCHA v345 service as a CAPTCHA, you must:

• set the following settings in blitz.prod.local.idp.captcha:

"captcha" : {
"reCAPTCHAv3" : {
"operations" : [

{
"call" : {
"headers" : [],
"method" : "post",
"url" : "https://www.google.com/recaptcha/api/siteverify?secret=${cfg.

→˓secret}&response=${ocp.response}"
},
"check" : {
"errRegExp" : {},
"okRegExp" : {

"score" : "1\\.0|0\\.(5|6|7|8|9)",
"success" : "true"

}
},
"name" : "verify"

}
],
"plainParams" : {

"sitekey" : "SITE_KEY"
},
"secureParams" : {

"secret" : "SITE_SECRET"
}

}
}

Instead of SITE_KEY and SITE_SECRET you should fill in the values obtained when registering Google re‐

CAPTCHA v3 on the site https://g.co/recaptcha/v3. You should also adjust the value in the score
parameter ‐ set the required threshold for successful passing of the check (in the example, the threshold is set

not lower than 0.5).

• set the following settings in blitz.prod.local.idp.password.captcha:

"captcha" : {
"mode" : {
"_name" : "X-Captcha-Check",
"_value" : "true",
"_type" : "on_header",
"type" : "always_on"

},
"enabled" : true,
"initJs" : "require(['/blitz/assets/blitz-common/javascripts/recaptcha_v3.js',

(continues on next page)

45 https://developers.google.com/recaptcha/docs/v3

2.6. Configuration file settings 252

https://developers.google.com/recaptcha/docs/v3

Blitz Identity Provider, version 5.23

(continued from previous page)

→˓'captcha-conf'], function(captcha, conf){ captcha(conf);});",
"name" : "reCAPTCHAv3"

}

To add a CAPTCHA to the confirmation page for linking a user account to an account from an external identity

provider, you must set the following settings in blitz.prod.local.idp.externalIdps.captcha:

"captcha" : {
"mode" : {
"_name" : "X-Captcha-Check",
"_value" : "true",
"_type" : "on_header",
"type" : "always_on"

},
"enabled" : true,
"initJs" : "require(['/blitz/assets/blitz-common/javascripts/recaptcha_v3.js',

→˓'captcha-conf'], function(captcha, conf){ captcha(conf);});",
"name" : "reCAPTCHAv3"

}

To add a CAPTCHA to the user registration page, you must set the following settings in blitz.prod.local.
idp.provisioning.registration.captcha:

"captcha" : {
"mode" : {
"_name" : "X-Captcha-Check",
"_value" : "true",
"_type" : "on_header",
"type" : "always_on"

},
"enabled" : true,
"initJs" : "require(['/blitz/assets/blitz-common/javascripts/recaptcha_v3.js',

→˓'captcha-conf'], function(captcha, conf){ captcha(conf);});",
"name" : "reCAPTCHAv3"

}

To add a CAPTCHA to the password recovery page, youmust set the following settings inblitz.prod.local.
idp.provisioning.recovery.captcha:

"captcha" : {
"mode" : {
"_name" : "X-Captcha-Check",
"_value" : "true",
"_type" : "on_header",
"type" : "always_on"

},
"enabled" : true,
"initJs" : "require(['/blitz/assets/blitz-common/javascripts/recaptcha_v3.js',

→˓'captcha-conf'], function(captcha, conf){ captcha(conf);});",
"name" : "reCAPTCHAv3"

}

2.6. Configuration file settings 253

Blitz Identity Provider, version 5.23

Queue server

Sending events to queue server

The following events can be sent to the queue server:

• user registration (USER_REGISTERED);

• password changed (USER_PASSWORD_SET);

• marker of session cancellations changed (USER_CRID_CHANGED);

• user attribute changes (USER_ATTRIBUTE_CHANGED);

• clearing user attributes (USER_ATTRIBUTE_REMOVED);

• user removed (USER_REMOVED);

• external user account bound (FEDERATION_POINT_BOUND);

• external user account detached (FEDERATION_POINT_UNBOUND);

• revocation of the authorization (scopes) issued to the application (SCOPES_REVOKED);

• group created (GROUP_CREATED);

• attributes of group updated (GROUP_UPDATED);

• group removed (GROUP_REMOVED);

• group member added (GROUP_MEMBER_ADDED);

• group member removed (GROUP_MEMBER_REMOVED).

To send events to the queue you should create a blockblitz.prod.local.idp.eventswith the following
code (using the example of user registration and password change):

"events" : {
"drivers" : {

"rabbit_driver" : {
"properties" : {},
"server" : {

"host" : "<RMQ_HOST>",
"port" : 5672

},
"type" : "RMQ",
"user" : {

"password" : "<RMQ_PASS>",
"username" : "<RMQ_USERNAME>"

}
}

},
"routes" : {

"USER_PASSWORD_SET" : [
"password_sync"

],
"USER_REGISTERED" : [

"registration"
]

},
"targets" : [

{
"discardList" : "PSWD_SYNC_DISCARD",
"driver" : {

"ext" : {
"exchange_name" : "users",
"routing_key" : "pwd_sync"

(continues on next page)

2.6. Configuration file settings 254

Blitz Identity Provider, version 5.23

(continued from previous page)

},
"id" : "rabbit_driver"

},
"encCertificate" : "rmqkey",
"name" : "password_sync",
"redelivery" : 3

},
{

"discardList" : "REG_DISCARD",
"driver" : {

"ext" : {
"exchange_name" : "users",
"routing_key" : "registration"

},
"id" : "rabbit_driver"

},
"encCertificate" : "rmqkey",
"name" : "registration",
"redelivery" : 3

}
]

}

Following settings should be configured:

• RMQ_HOST ‐ RabbitMQ queue server domain;

• RMQ_USERNAME ‐ user name for the queue server;

• RMQ_PASS ‐ password for the queue server.

In addition, to encrypt passwords sent to the queue (only forUSER_REGISTERED andUSER_PASSWORD_SET
messages), the encCertificate parameter should specify the alias of the electronic signature key (in the

standard BlitzIdPKeystore.jks key store) with which to encrypt passwords in messages.

Queue server as a message broker

Blitz Identity Provider uses a built‐in message broker to handle asynchronous tasks, using a database to track

tasks.

If the intensity of requests to the Blitz Identity Provider is high, it may be appropriate to use the RabbitMQ queue

server as a message broker. To do this, you need to make the following settings in the RabbitMQ console (usually,

http://hostname:15672/):

• create a queue with the name blitz-tasks (in the “Queues “ menu of the console);

• create an exchange named blitz-tasks-exh (in the “Exchanges “ menu of the console) and config‐

ure binding on the blitz-tasks queue with a routing_key named blitz-tasks;

• create the blitz user (in the “Admin” menu of the console) and assign rights to the created queue to it.

After configuring RabbitMQ, adjust the settings in blitz.conf ‐ in the blitz.prod.local.idp.tasks
block set broker-type to rmq and set the connection settings to RabbitMQ in the broker-rmq block:

• set the name blitz-tasks-exh in the exchange parameter;

• set the queue parameter in the executionRules block and the name parameter in the queues block
to blitz-tasks;

• set the user name (blitz) in the username parameter in the user block;

• set the user’s password in the password parameter in the user block ‐ the password will be encrypted

after Blitz Identity Provider is launched;

2.6. Configuration file settings 255

Blitz Identity Provider, version 5.23

• specify the address and port of the connection to RabbitMQ in the host and port parameters of the

server block;

• if necessary, adjust other parameters defining the size of the connection pool (poolSize), the number of

channels (channelSize), the waiting time for a response from the queue server (ackTimeout);

• if necessary, adjust the task processing broker settings that determine the number of at‐

tempts (maxAttempts) to re‐process tasks in case of an error, the time between attempts

(redeliveryDelayInSec), the size of the processed message bundle (dequeueBatchSize),
the queue check period (dequeuePeriodInSec), the number of handlers (executorPoolSize):

A configuration example is shown below:

"tasks" : {
"broker-type" : "rmq",
"broker-rmq" : {

"consumer" : {
"poolSize" : 2

},
"exchange" : "blitz-task-exh",
"publisher" : {

"ackTimeout" : 15,
"channelsSize" : 8,
"poolSize" : 2

},
"server" : {

"host" : "RMQ_HOST",
"port" : 5672

},
"user" : {

"password" : "CHANGE_ME",
"username" : "blitz"

}
},
"executionRules" : [

{
"maxAttempts" : 2,
"queue" : "blitz-tasks",
"redeliveryDelayInSec" : 60

}
],
"queues" : [

{
"dequeueBatchSize" : 10,
"dequeuePeriodInSec" : 30,
"executorPoolSize" : 5,
"name" : "blitz-tasks"

}
]

}

2.6. Configuration file settings 256

Blitz Identity Provider, version 5.23

Stores and databases

Storing objects in Couchbase

You can reassign the internal Blitz Identity Provider storages (buckets) in Couchbase Server DBMS used for data

storage. For the following datasets, you can specify the need to use other storages (buckets) than the default
ones.

To configure other storages (buckets) you need to add settings in blitz.prod.local.idp.
internal-store-cb block:

• buckets ‐ list of used storages (buckets), if they are different from default ones;

• bucketsMapping ‐ overriding the default dataset locations to store in other storages.

An example of the configuration file is shown below. As a result, the acl dataset is placed in the users storage,

and clt and iat are placed in apps. By default, all three datasets were written to the oauth store.

"internal-store-cb" : {
…
"buckets" : {
["users", "oauth", "audit", "builtin_idstore", "ctxs"]

},
"bucketsMapping" : {
"acl" : "users",
"clt" : "apps",
"iat" : "apps"

},
…

}

Reading the Couchbase Server cluster configuration

If one of the Couchbase Server cluster nodes is unavailable, users may experience errors when logging in to Blitz

Identity Provider. In this case, you must calibrate the value of the global cluster configuration read interval. If the

connection to a node is interrupted, the configuration will be recalculated on time so that Blitz Identity Provider

will only access the working nodes. Do the following:

1. Open the /usr/share/identityblitz/blitz-config/blitz.conf configuration file.

2. In the blitz.prod.local.idp.internal-store-cb.ioConf section, set the value of the

configPollInterval parameter in milliseconds.

"internal-store-cb" : {
"ioConf" : {

"configPollInterval" : 2500
},
...,

}

2.6. Configuration file settings 257

Blitz Identity Provider, version 5.23

Object storage time

You can set a limitation of database records retention period for audit data (by default, records are stored indefi‐

nitely). To do this, in the blitz.prod.local.idp.internal-store-cb block, add the ttlMapping
setting specifying the doc_type of the record (aud) and the retention time in seconds.

Configuration example (audit retention time is limited to 90 days):

"internal-store-cb": {
…
"ttlMapping": {
"aud": 7776000

},
…

}

You can configure a limitation on the retention period of records in the database for device data. To do this, add

the settings in the blitz.prod.local.idp.login block:

• uaActiveTtlInSec ‐ storage time of the record of the device (in seconds) with which the user’s

long‐term session is associated or which the user marked as trusted at login. If the setting is not speci‐

fied, the information about such a device is stored for one year from the last login from this device;

• uaInactiveTtlInSec ‐ time for storing the record of other devices (in seconds). If the setting is not

specified, the information about such a device is stored for 5 days.

Example of configuration:

"login": {
…
"uaActiveTtlInSec": 2678400,
"uaInactiveTtlInSec": 432000,
…

}

Advanced PostgreSQL connection settings

For advanced management of the connection pool with PostgreSQL or another JDBC‐enabled database, do the

following:

1. Open the /usr/share/identityblitz/blitz-config/blitz.conf configuration file.

2. In the blitz.prod.local.idp.internal-store-jdbc.pool section, set the following op‐

tions:

2.6. Configuration file settings 258

Blitz Identity Provider, version 5.23

Option By default Description

testOnBorrow true Check a connection status before send‐

ing data. In the case of an error, the

system removes the connection and se‐

lects the next one from the pool.

testOnCreate false Check a connection status after it has

been created in the pool.

testOnReturn false Check a connection status after return‐

ing it to the pool.

testWhileIdle false Check an idle connection status. In

the case of an error, the connection is

removed from the pool.

timeBetweenEvictionRun-
sMillis

-1 Interval in milliseconds between check

runs of an idle connection. The op‐

tion affects testWhileIdle.
validationQuery - SQL query executed when checking a

connection status from the pool, is-
Valid() is used if the value is empty.

"internal-store-jdbc" : {
"pool" : {

"initial_size" : 5,
"max_idle_conn" : 10,
"max_total_conn" : 20,
"max_wait_conn_ms" : 30000,
"min_idle_conn" : 7
"testOnBorrow" : true,
"testOnCreate" : true,
"testOnReturn" : true,
"testWhileIdle" : true,
"timeBetweenEvictionRunsMillis" : 30000,
"validationQuery" : ""

}
}

3. Restart the services.

sudo systemctl restart blitz-idp blitz-console blitz-recovery blitz-
→˓registration

Advanced LDAP connection settings

You can create settings for connection to attribute storages working via LDAP protocol in the admin console. At

the same time, you can set LDAP connection pool settings through the admin console. Blitz Identity Provider will

use the common connector pool settings to set up connections by each application that uses the connection to

the storages. This can lead to a large number of LDAP connectors being created.

Using the blitz.conf configuration file, you can configure the parameters of the initial and maximum num‐

ber of connectors in the context of different Blitz Identity Provider applications (for example, for the admin con‐

sole you can set smaller values of connectors in the pool than for the authentication service). To do this, in

the blitz.prod.local. id-stores block in the settings of the corresponding storage, along with the

initialConnections and maxConnections settings, you can create settings of the form initial-
Connections#BLITZ_APP and maxConnections#BLITZ_APP, where BLITZ_APP is the name of the

corresponding application (blitz-console, blitz-idp, blitz-registration, blitz-recovery).

An example of a setting where the admin console is set to a smaller connection pool size than for the other

applications:

2.6. Configuration file settings 259

Blitz Identity Provider, version 5.23

"id-stores" : {
"list" : [
{

"type" : "LDAP",
…
"initialConnections" : 10,
"initialConnections#blitz-console" : 1,
"maxConnections" : 20,
"maxConnections#blitz-console" : 1

}
]

}

Whenmaking LDAP queries to the Blitz Identity Provider attribute storage, Blitz Identity Provider takes an existing

LDAP directory connection from the connection pool. After the query is completed, Blitz Identity Provider does

not close the connection, but returns it back to the connection pool for reuse. This procedure for interacting with

LDAP provides high performance, but requires keeping connections to the LDAP directory open for extended

periods of time. Firewall or LDAP directory settings may prevent Blitz Identity Provider applications from keeping

LDAP directory connections open for extended periods of time.

Blitz Identity Provider TCP connections to an LDAP directory can be closedwithout a negotiated connection termi‐

nation, so that the LDAP directory will close the connection without Blitz Identity Provider being notified. When

attempting to use such a connection from the pool, a long timeout may occur before Blitz Identity Provider con‐

siders the connection closed and removes it from the connection pool. To ensure that this situation does not

affect users, Blitz Identity Provider provides an algorithm to periodically check the validity of open LDAP connec‐

tions. The healthCheckInterval period (in milliseconds) is used to check the connection status, and the

timeout time in the absence of LDAP directory response to the request is set by the connectionTimeout
parameters (in milliseconds). The described mode of optimal interaction with the connection pool is enabled by

default (setting useSyncMode to false). In case of unstable operation of connections with LDAP directory

it is recommended to try to enable synchronous mode of interaction with the directory (set useSyncMode to

true).

Examples of recommended settings are below:

"id-stores" : {
"list" : [
{

"type" : "LDAP",
…
"connectionTimeout" : 3000,
"healthCheckInterval" : 300000,
"useSyncMode" : false

}
]

}

If several attribute storages are connected to Blitz Identity Provider at the same time, a situation may arise that

when identifying and authenticating a user by login and password, several accounts, possibly belonging to dif‐

ferent people, with matching logins may be detected in several storages. This situation should be avoided when

implementing Blitz Identity Provider, and by default, if such a situation is detected, Blitz Identity Provider will issue

a login error to the user indicating that there is an incorrect user account situation. However, in some cases there

may be a situation when the implementation deliberately allows several accounts of different users in different

storages to be found by one login. In this case, you can specify thefirstSuccededmode in theauthStrat-
egy setting in the blitz.prod.local.idp.login settings block. In this case all found accounts will be

checked, and whichever of them matches the user’s password first will be logged in with that account.

Example of configuration:

"login" : {
"authStrategy" : {

(continues on next page)

2.6. Configuration file settings 260

Blitz Identity Provider, version 5.23

(continued from previous page)

"mode" : "firstSucceeded"
},
…

}

Geodatabase

You can connect to Blitz Identity Provider a database in mmdb46 format with geodata. In this case, Blitz Identity

Provider will record the country, region and city data corresponding to the IP address, as well as the latitude,

longitude and radius of accuracy obtained from the geodatabase, in addition to storing the IP address, when

logging security events and memorizing the user’s devices and browsers.

The saved geodata will be shown to the administrator in the admin console. It is also possible to enable displaying

geodata to the user in the “User profile” and include it in the texts of notifications sent by SMS or email.

To connect the database with geodata, you need to upload the mmdb file with the database to the servers with

Blitz Identity Provider, and create a blitz.prod.local.idp.geoIp settings block with the following set‐

tings in the driver block:

• type ‐ type of the base with geodata. Only geoIp2-db type is supported;

• path ‐ path on the server to the file with geodatabase in mmdb format.

Example of configuration:

"geoIp": {
"driver": {

"type": "geoIp2-db",
"path": "geoIp/GeoIP2-City.mmdb"

}
}

Several DBMSs usage

In Blitz Identity Provider you can configure simultaneous use of Couchbase Sever and PostgreSQLDBMS for storing

different types of objects. To do this, specify the following settings in the blitz.prod.local.idp.stores
settings block:

• default_type ‐ the default DBMS used. Possible values: cb ‐ Couchbase Server, jdbc ‐ PostgreSQL or

other relational DBMS with JDBC support;

• list-of-types ‐ identifiers of Blitz Identity Provider object classes and used for placing corresponding

DBMS objects (cb or jdbc). Only those object classes that are hosted in a DBMS other than the one

specified in default_type should be included in the configuration. The following object classes are

available:

– user-store ‐ user profile attributes;

– access-token-store ‐ security tokens;

– refresh-token-store ‐ refresh tokens;

– id-ext-store ‐ bindings of external identity providers;

– device-code-store ‐ Confirmation codes for OAuth 2.0 Device Authorization Grant;

– access-list-store ‐ user‐granted permissions to applications;

– blitz-action-store ‐contact confirmation codes (sms, email);

46 https://www.maxmind.com/en/geoip2‐databases

2.6. Configuration file settings 261

https://www.maxmind.com/en/geoip2-databases

Blitz Identity Provider, version 5.23

– oath-token-store ‐ bindings of HOTP and TOTP one‐time password generators;

– oath-load-proc-store ‐ history of downloaded descriptions of hardware HOTP and TOTP

one‐time password generators;

– confirmation-request-store ‐ requests for one‐time passwords;

– reg-context-store ‐ user registration context;

– reg-context-storef ‐ user registration context;

– id-store-maker ‐ a built‐in storage of user IDs;

– rcv-ctx-store ‐ user password recovery context;

– db-client-store ‐ dynamic clients;

– db-client-storef ‐ dynamic clients;

– initial-token-store ‐ IAT tokens;

– user-agent-store ‐ users’ devices (browsers);

– web-authn-key-store ‐ security keys;

– audit-store ‐ security events;

– task-store ‐ asynchronous tasks.

• utils ‐ list of utility modules required for the used DBMS type: modules.CouchbaseModule ‐ for

Couchbase Server, modules.JDBCModule ‐ for PostgreSQL.

Example of two DBMS sharing settings:

"stores" : {
"default-type" : "jdbc",
"list-of-types" : {
"access-token-store" : "cb",
"refresh-token-store" : "cb",
"user-agent-store" : "cb"

},
"utils" : [
"modules.CouchbaseModule",
"modules.JDBCModule"

]
}

Blitz Identity Provider domain

You can change the Blitz Identity Provider domain by editing domain settings configuration file in the blitz.
prod.local.idp.net settings block.

Example of configuration:

"net" : {
"domain" : "demo.identityblitz.com"
}

If necessary, change (page 231) the domain setting in blitz.prod.local.idp.lang in the por-
tal-lang-cookie block.

The example of configuration file excerpt:

2.6. Configuration file settings 262

Blitz Identity Provider, version 5.23

"lang" : {
…
"portal-lang-cookie" : {
"domain" : "identityblitz.com",
…

}
}

If necessary, you can change the path to applications (by default, applications are available using the /blitz
path). You can edit the path in the play.conf configuration file. It is necessary to change the context
parameter in the play.http block:

"http" : {
"context" : "/blitz",
...
}

Change the Blitz Identity Provider domain and path in the /blitz-config/saml/conf/
relying-party.xml, /blitz-config/saml/metadata/idp-metadata.xml files.

An example of changing settings in relying-party.xml:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<ns18:RelyingPartyGroup …>

<ns18:AnonymousRelyingParty
provider="https://demo.identityblitz.com/blitz/saml"
defaultSigningCredentialRef="IdPCredential"/>

<ns18:DefaultRelyingParty
provider="https://demo.identityblitz.com/blitz/saml"
defaultSigningCredentialRef="IdPCredential">
…

</ns18:DefaultRelyingParty>
…

</ns18:RelyingPartyGroup>

An example of changing settings in idp-metadata.xmll:

<?xml version="1.0" encoding="UTF-8"?>
<EntityDescriptor … entityID="https://demo.identityblitz.com/blitz/saml">

<IDPSSODescriptor …>
…
<ArtifactResolutionService

Binding="urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML1/SOAP/

→˓ArtifactResolution"
index="1"/>

<ArtifactResolutionService
Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/SOAP/

→˓ArtifactResolution"
index="2"/>

<SingleLogoutService
Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/Redirect/

→˓SLO"
ResponseLocation="https://demo.identityblitz.com/blitz/saml/profile/SAML2/

→˓Redirect/SLO"/>
<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Plain-Redirect"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/Redirect/

(continues on next page)

2.6. Configuration file settings 263

Blitz Identity Provider, version 5.23

(continued from previous page)

→˓Plain/SLO"
ResponseLocation=

"https://demo.identityblitz.com/blitz/saml/profile/SAML2/Redirect/Plain/SLO
→˓"/>

<SingleLogoutService
Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/SOAP/SLO" /

→˓>
…
<SingleSignOnService

Binding="urn:mace:shibboleth:1.0:profiles:AuthnRequest"
Location="https://demo.identityblitz.com/blitz/saml/profile/Shibboleth/SSO"/>

<SingleSignOnService
Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/POST/SSO"/>

<SingleSignOnService
Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST-SimpleSign"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/POST-

→˓SimpleSign/SSO"/>
<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/Redirect/

→˓SSO"/>
<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Plain-Redirect"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/Redirect/

→˓Plain/SSO"/>
</IDPSSODescriptor>
<AttributeAuthorityDescriptor …>
…
<AttributeService

Binding="urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML1/SOAP/

→˓AttributeQuery"/>
<AttributeService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
Location="https://demo.identityblitz.com/blitz/saml/profile/SAML2/SOAP/

→˓AttributeQuery"/>
…
</AttributeAuthorityDescriptor>

</EntityDescriptor>

Users

Blocking inactive users

Blitz Identity Provider tracks the time of last user activity. It is possible to block user accounts that have been in‐

active for a long time. To activate this feature, run the lockinactive.sh script in cron. The script is located in
the /usr/share/identityblitz/blitz-console/bin directory on the server with the blitz‐console

application. It is recommended to run the script once a day duringminimal activity on the system. Before running

the script it is necessary to edit it in a text editor ‐ install:

• inactive_period ‐ required period of inactivity (in days), after which the account should be blocked;

• range_size is the range of account coverage (in days), accounts whose last activity was

between (current date - inactive_period - range_size) and (current date -
inactive_period) will be blocked.

Blitz Identity Provider also allows you to automatically lock an account at the time of a login attempt if the account

has been inactive for a long period of time. To enable this feature, add the blitz.prod.local.idp.lock

2.6. Configuration file settings 264

Blitz Identity Provider, version 5.23

configuration block with the inactivity block having a limit setting in seconds that specifies the maximum

allowed inactivity period after which the account will be locked out for inactivity when a login attempt is made.

In the checkInterval setting, you can specify the minimum period in seconds, no more often than which the

account will be checked for inactivity period when logging in.

Example of configuration:

"lock" : {
"inactivity" : {

"checkInterval" : 86400,
"limit" : 31536000

}
}

In the settings of the password recovery service, you can enable the mode that will allow unlocking an account

locked due to inactivity in case of successful recovery of a forgotten password (page 134).

Prohibit reuse of the remote user ID

Blitz Identity Provider keeps track of previously used user IDs so that they cannot be reused after a user account

has been deleted for a specified period of time. To do this, add the following remove section to the blitz.
prod.local.idp.provisioning block, specifying the number of days (days) during which the user ID

cannot be used for re‐registration:

"provisioning" : {
…
"remove": {
"mode": "keepRemovedId",
"days": 365

}
}

WebAuthn, Passkey, FIDO2, U2F provider certificates

See also:

• Logging in via WebAuthn, Passkey, FIDO2 (page 65)

• Login confirmation with WebAuthn, Passkey, FIDO2, U2F (page 67)

Blitz Identity Provider allows you to remap the list of intermediate and root certificates of security key

providers (WebAuthn, Passkey, FIDO2, U2F). To do this, in the blitz.prod.local.idp.webAuthn.
trustedStores settings block, specify the settings containing the type (type), file path (path) and password
(password) of access to the key container to be used to verify the signature of attestation objects generated

during security key registration. The standard key container is automatically updated when new versions of Blitz

Identity Provider are installed and contains current root and intermediate certificates of TPM modules, FIDO, as

well as Apple and Google certificates required to verify the signature of attestation objects. If you want to restrict

security keys to devices from specific vendors, you must remove unnecessary root and intermediate certificates

from the key container.

Example of configuration:

"webAuthn" : {
…
"trustedStores" : [

{
"password" : "*****",
"path" : "webAuthn-trusted-ca.jks",
"type" : "jKS"

(continues on next page)

2.6. Configuration file settings 265

Blitz Identity Provider, version 5.23

(continued from previous page)

}
],
…

}

OIDC, SAML, and external identity providers

OIDC Discovery service

Blitz Identity Provider automatically posts the OIDC Discovery47 service according to the settings specified in Blitz

Identity Provider. As part of the service, you can specify a documentation address for the OIDC service. To specify

your own documentation address, youmust specify theserviceDocumentationUrl setting in theblitz.
prod.local.idp.oauth settings block with the value of the documentation reference address.

Call addresses of external providers

When implementing Blitz Identity Provider, you may need to configure calls from Blitz Identity Provider servers

to external identity provider handlers not directly, but through a proxy server. In this case, it is necessary to

change the default addresses of handlers of external identity providers to the addresses registered on the proxy

server. To correct the handler addresses, you need to change the values of theauthUri, tokenUri, dataUri
settings in the corresponding blocks of the external Identity Provider settings in blitz.prod.local.idp.
federation.

Example of settings for logging in through an external Google provider:

"federation" : {
"points" : {
"google" : [

{
…
"authUri" : "https://accounts.google.com/o/oauth2/auth",
"tokenUri" : "https://accounts.google.com/o/oauth2/token",
"dataUri" : "https://www.googleapis.com/oauth2/v1/userinfo?alt=json",
…

},
…

]
}

}

External SAML provider

Blitz Identity Provider allows you to configure login through an external identity provider running SAML 2.0.

To do this, in the blitz.prod.local.idp.federations configuration block, create an external provider

saml with the following settings:

• name is the system name of the external identity provider;

• humanReadableName ‐ description of the external identity provider;

• clientId is the service provider name (EntityId) assigned to Blitz Identity Provider when registering
with the external SAML Identity Provider;

47 https://tools.ietf.org/html/rfc8414

2.6. Configuration file settings 266

https://tools.ietf.org/html/rfc8414

Blitz Identity Provider, version 5.23

• signAuthnReq ‐ specifies whether|project| should sign the SAML request sent to the external identity

provider;

• checkAssertionSign ‐ determines whether to check the signature of SAML assertions received from

an external identity provider (for PROD environments, it is mandatory to include signature verification);

• credentials block with access settings to the key container used for signing requests to the SAML Iden‐

tity Provider. It is configured optionally in case a separate key container is required for interaction with an

external identity provider. If the setting is not specified, keys will be taken from the main keystore config‐

ured in the blitz.prod.local.idp.keystore block (in this case the name of the identity provider

from the name setting will be used as alias).

The settings are made:

– alias is the name of the key in the container;

– keystore is a configuration block containing the container type (type), which can be JCEKS or BKS,
as well as the container path (path) and the container password (password);

• idpMetaPath ‐ path to the file where the external identity provider metadata (XML file with IDP meta‐

data) is stored;

• userMatching configuration block ‐ specifies the rules of account matching:

– in the type setting is an indication that the basic (value builder) account binding setting is used;

– in the mapping setting ‐ rules for mapping accounts from the external SAML Identity Provider to

accounts in Blitz Identity Provider;

– in the matchingRules setting ‐ rules for migrating SAML assertions from an external identity

provider to account attributes in Blitz Identity Provider;

– requireLogInToBind ‐ feature “Prompt the user to enter a login and password for binding if the

account has not been identified “;

– strictMatching ‐ a feature “Require password input if account has been identified”;

– uniqueMatching – a feature “Only one account by the configured matching rules should be found

for binding”.

Example of external identity provider settings:

"federation" : {
"points" : {
"saml" : [

{
"name" : "demo-idp",
"humanReadableName" : "External SAML IDP",
"clientId" : "login.company.com",
"signAuthnReq" : true,
"checkAssertionSign" : true,
"_credentials" : {

"alias" : "demo-idp",
"keyStore" : {
"password" : "*****",
"path" : "demo-idp-key.jks",
"type" : "JCEKS"

}
},
"idpMetaPath" : "demo-idp-metadata.xml",
"userMatching" : {
"type" : "builder",
"mapping" : [

{
"attr" : "urn:saml:mail",
"master" : false,

(continues on next page)

2.6. Configuration file settings 267

Blitz Identity Provider, version 5.23

(continued from previous page)

"value" : "${email}"
}

],
"matchingRules" : [

[
{
"attr" : "urn:saml:mail",
"value" : "${email}"

}
]

],
"requireLogInToBind" : false,
"strictMatching" : false,
"uniqueMatching" : false

}
}

],
…

}
}

After creating the external provider settings, it is necessary to include it in the list of available external identity

providers. To do this, in the blitz.prod.local.idp.login settings block in the list of authentication

methods (methods) in the list of external login providers externalIdps add the external provider c fed-
Point corresponding to the configured one.

Configuration example to enable an external identity provider with type saml and name demo-idp:

"login" : {
…
"methods" : {
…
"externalIdps" : {

"idps" : [
…
{
"fedPoint" : "saml:demo-idp"

},
…

],
…

},
…

},
…

}

Customize the logo (page 243) for the login button via the external login provider.

2.6. Configuration file settings 268

Blitz Identity Provider, version 5.23

Logging incomplete login attempts

In Blitz Identity Provider, all events are logged when the process that caused them has finished. This is normal for

most events, because the processes are short‐term.

Among all the events being recorded, there are some important events related to user login. If the login is suc‐

cessful, a security event is logged at the very end of the login process, indicating who logged in, where and when,

what authentication methods were used, IP address, UserAgent and many other details.

The login process can be a complex, depending on the configurations made during implementation. It may not

always be sufficient to only enter a username and password and an additional login confirmation is required, or

during the login process the user will interact with auxiliary applications (pipes), for example, to update a contact,

configure a passkey or answer a question about whether he/she trusts the device/browser. If a user stops logging

in at any point during this process, it may not be completed, and as a result, an audit event will not be created for

that incomplete process. Depending on at what point this happens, this could be a security issue. For example, if

a user simply opened the login page and did not enter a username and password, then logging such an event in

the security log is has no particular interest. But if the user entered the correct username and password, but got

to a login confirmation screen that he didn’t pass, then such a security event would be a good reason to record.

Perhaps the malicious user was brute‐forcing the password and was able to successfully pick it, but was unable

to pass the second authentication factor. A security event would make this situation known if it were recorded

and analyzed.

To activate event logging of unsuccessful (incomplete) logins it is necessary to add parameters in the blitz.
prod.local.idp.login settings block:

• postponeEnabled ‐ value true if the mechanism is enabled;

• postponeTtl ‐ time in seconds after which a pending audit event is logged if the login has not been

completed.

In case RabbitMQ is used to process tasks, you must make an additional queue named <main queue
name>-postpone for the main task queue and set the following arguments for it:

x-dead-letter-exchange = <exchange in use>
x-dead-letter-routing-key = <main queue>

Also for the created queue, you need to configure binding to the exchange used.

Transferring security events to file or Kafka

In Blitz Identity Provider, you can configure the logging of security events to one or more receivers. The configu‐

ration is set in the blitz.prod.local.idp.audit configuration block.

The following settings must be configured:

• emitters ‐ defines the list of receivers of audit records. For each receiver the settings block is filled in:

– type ‐ receiver type. Possible values:

* audit-store ‐ the record is made in the DBMS;

* log ‐ the record is made to the logger with the name AUDIT.

– enabled ‐ optional setting ‐ determines whether the receiver is enabled or not;

– include ‐ optional setting ‐ lists the types of security events (see the table below), which are used

to write to the receiver. If the setting is not specified, all security events are written;

– exclude ‐ optional setting ‐ lists the types of security events (see table below) that should not be

written to the receiver. If the setting is not specified, no events are excluded. If the setting is specified

together with include, the list of events is first defined by the include setting, and then the

events specified in exclude are excluded from it. It is recommended not to use both include and

exclude settings together, but to use only one of them;

2.6. Configuration file settings 269

Blitz Identity Provider, version 5.23

– logger ‐ optional setting ‐ specified only for the receiver with log type. Allows you to define the

name of the logger. If the setting is not specified, the recording is made to the logger with the name

AUDIT;

– name ‐ optional setting ‐ specified for receivers with types log and kafka. Specifies the name of

the receiver, since multiple receivers can be configured for these receiver types. If the setting is not

specified, log and kafka are used as receiver names;

– bootstrapServers ‐ a mandatory setting for a receiver with type kafka ‐ specifies a list of ad‐

dresses for initial connection to the Kafka cluster;

– topic ‐ mandatory setting for receiver with type kafka ‐ the name of the Kafka topic to which the

event should be sent;

– securityProtocol ‐ optional setting for receiver with type kafka ‐ in case of using SASL con‐

nection may not be specified. In case of connection via SSL, the value SSL must be specified in the

setting. If TLS is not configured in Kafka, the value SASL_PLAINTEXTmust be specified;

– sasl ‐ optional configuration block for receiver with type kafka ‐ specifies connection parameters

when using SASL authentication to connect to Kafka:

* jaasConfig is a connection string that can use the substitution parameters from se-
cureParams;

* mechanism is the value of PLAIN;

* secureParams ‐ block with parameters that will be encrypted in the configuration file when

the server is started.

Block example:

"sasl": {
"jaasConfig": "org.apache.kafka.common.security.plain.PlainLoginModule␣

→˓required username=\"alice\" password=\"${pswd}\";",
"mechanism": "PLAIN",
"secureParams": {

"pswd": "Content will be encrypted at startup",
}

}

– ssl ‐ optional configuration block for receiver with type kafka ‐ sets SSL parameters for connection

to Kafka:

* enabledProtocols ‐ lines with the list of enabled protocols;

* keyStore is a settings block with parameters for accessing Blitz Identity Provider key container.

It contains type, path, password settings;

* trustedStore ‐ settings block with parameters of access to the container with trusted certifi‐

cates. It contains type, path, password settings;

* keyPassword ‐ optional setting ‐ the password to access the key.

Block example:

"securityProtocol" : "SSL",
"ssl" : {

"enabledProtocols" : ["TLSv1.2,TLSv1.3"],
"keyStore" : {

"password" : "CHANGE-ME",
"path" : "/etc/blitz-config/bip-d1app01-1.jks",
"type" : "JKS"

},
"trustedStore" : {

"password" : "CHANGE-ME",

(continues on next page)

2.6. Configuration file settings 270

Blitz Identity Provider, version 5.23

(continued from previous page)

"path" : "/etc/blitz-config/ca.jks",
"type" : "JKS"

},
"keyPassword": "CHANGE-ME"

},

– tuning ‐ optional settings block for a receiver with type kafka ‐ specifies optional producer
settings for interaction with Kafka. Parameter names must be specified with a dot as in the Kafka48

documentation.

Block example:

"tuning": {
"client.id": "BlitzKafka"

}

– emitAtLeastOneOf ‐ optional setting ‐ the list of receivers is specified, it is enough to record

events in any of them for the operation to be considered successful;

– emitToAllOf ‐ optional setting ‐ specifies the list of receivers that must receive confirmation of

successful event recording for the operation to be considered successful. If the emitAtLeastO-
neOf and emitToAllOf settings are not specified, then confirmation from all configured receivers

is mandatory;

– emitTimeoutInSec ‐ optional setting ‐ defines the maximum response time from the receiver in

response to event record requests. If the setting is not specified, the wait is 60 seconds.

Example of audit recording settings in log, DBMS and Kafka at the same time:

"audit": {
"emitters": [

{
"type": "log",
"name": "users-log",
"enabled": true,
"logger": "AUDIT",
"exclude": ["admin_added", "admin_pswd_changed", "admin_removed",

→˓"admin_roles_changed",
"config_changed"]

},
{

"type": "log",
"name": "admins-log",
"enabled": true,
"logger": "AUDITADMIN",
"include": ["admin_added", "admin_pswd_changed", "admin_removed",

→˓"admin_roles_changed",
"config_changed"]

},
{

"type": "audit-store",
"enabled": true

},
{

"type" : "kafka",
"enabled": true,
"name" : "kafka",
"include": ["login"],
"bootstrapServers" : ["infra-kfk01:9443"],

(continues on next page)

48 https://kafka.apache.org/documentation/#producerconfigs

2.6. Configuration file settings 271

https://kafka.apache.org/documentation/#producerconfigs

Blitz Identity Provider, version 5.23

(continued from previous page)

"topic" : "blitz_audit",
"securityProtocol" : "SSL",
"ssl" : {

"enabledProtocols" : ["TLSv1.2,TLSv1.3"],
"keyStore" : {

"password" : "CHANGE-ME",
"path" : "/etc/blitz-config/bip-app01.jks",
"type" : "JKS"

},
"trustedStore" : {

"password" : "CHANGE-ME",
"path" : "/etc/blitz-config/ca.jks",
"type" : "JKS"

}
},

}
],
"emitAtLeastOneOf": ["users-log","admins-log","kafka"],
"emitToAllOf": ["audit-store"],
"emitTimeoutInSec": 30

}

When logging an audit to the logger, you can configure the logger using the logback.xml configuration

file (see for more information <https://logback.qos.ch/documentation.html>`__).
Example of configuring the ``AUDIT logger in the logback.xml configuration file:

…
<appender name="AUDIT" class="ch.qos.logback.core.rolling.RollingFileAppender">

<file>${dir.logs}/audit-${app.name}.log</file>
<encoder>

<pattern>%date - [%level] -[%file:%line] - %message%n%xException{20}</
→˓pattern>

</encoder>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

<fileNamePattern>${dir.logs}/archive/audit-${app.name}.%d{yyyy-MM-dd}.
→˓log.gz</fileNamePattern>

<maxHistory>90</maxHistory>
<totalSizeCap>5GB</totalSizeCap>

</rollingPolicy>
</appender>

<logger name="AUDIT" additivity="false">
<appender-ref ref="AUDIT" />

</logger>
…

Example of a log entry:

2023-11-20 13:29:47,170 - [INFO] -[LoggerEventEmitterDriver.scala:37] - {"ip_st":
→˓"Tashkent","ip":"213.230.116.179","authnDone":"true","process_id":"b80ca03e-4718-
→˓44ff-9456-7d4255610eaa","ip_ctr":"Узбекистан","type":"login","object_id":"BIP-
→˓123456","protocol":"oAuth","subject_id":"BIP-123456","auth_methods":"cls:password
→˓","session_id":"f8d85ba2-a26a-447f-b82e-944b9218abb8","timestamp":1700476187069,
→˓"ch_platform_version":"\"14.1.0\"","ch_platform":"\"macOS\"","ip_ct":"Tashkent",
→˓"id_store":"ldap01","ip_lng":"69.2494","ip_rad":"5","ch_ua":"\"Google Chrome\";
→˓v=\"119\", \"Chromium\";v=\"119\", \"Not?A_Brand\";v=\"24\"","user_agent":
→˓"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like␣
→˓Gecko) Chrome/119.0.0.0 Safari/537.36","lp_id":"test-system","id":
→˓"6056828858453673-600312119","ip_lat":"41.3171","client_auth_method":"redirectUri
→˓"}

2.6. Configuration file settings 272

Blitz Identity Provider, version 5.23

Possible types of security events:

• admin_added ‐ administrator added

• admin_pswd_changed ‐ administrator password changed

• admin_removed ‐ administrator removed

• admin_roles_changed ‐ administrator roles changed

• app_password_changed ‐ the password for the application is set

• attribute_changed ‐ attribute added, changed or deleted

• attribute_confirmed ‐ attribute confirmed

• auth ‐ authentication performed (with OAuth 2.0 Resource Owner Password Credentials)

• auth_failed ‐ authentication error

• auth_req ‐ authentication request

• authz_granted ‐ OAuth authorization issued

• authz_rejected ‐ OAuth authorization denied

• authz_revoked ‐ OAuth authorization revoked

• bind_ext_account ‐ account is bound to an external account

• config_changed ‐ changed configuration settings

• duo_put ‐ Duo Mobile app is bound

• duo_remove ‐ Duo Mobile application is unbound

• grant_right ‐ assigning access rights

• group_attr_changed ‐ user group’s attribute has been changed or deleted

• group_registered ‐ user group created

• group_removed ‐ user group deleted

• hotp_attached ‐ HOTP generator is bound

• hotp_detached ‐ HOTP generator is unbound

• internal_user_deleted ‐ account deleted

• locked_methods_changed ‐ changed the list of blocked authentication methods

• login ‐ login is performed

• login_failed ‐ login error

• login_stopped ‐ unsuccessful login

• logout ‐ user is logged out

• logout_req ‐ logout request

• member_added ‐ the user is joined to the user group

• member_removed ‐ user excluded from the user group

• needed_password_change ‐ flag of password change necessity is set

• recovery ‐ account access restored

• recovery_fail ‐ access recovery failed

• recovery_req ‐ access recovery is request

• registration ‐ account is registered

• registration_req ‐ registration is request

2.6. Configuration file settings 273

Blitz Identity Provider, version 5.23

• required_factor_changed ‐ changed user authentication mode

• reset_user_password ‐ password set by administrator

• reset_user_sessions – log out devices (reset sessions)

• revoke_right ‐ revoke access rights

• send_email_code ‐ confirmation code sent to email

• send_push_code ‐ confirmation code sent to Push

• send_sms_code ‐ confirmation code sent by SMS

• token_exchange_failed ‐ access token exchange denied

• token_exchanged ‐ access token has been exchanged

• token_granted ‐ access token issued

• totp_attached ‐ TOTP generator is bound

• totp_detached ‐ TOTP generator is unbound

• unbind_ext_account ‐ account is unbound from external account

• user_locked ‐ account locked

• user_password_changed ‐ user password changed

• user_sec_qsn_changed – security question changed

• user_sec_qsn_removed – security question removed

• user_unlocked ‐ account unlocked

• web_authn_reg_key ‐ security key added

• web_authn_revoke_key ‐ security key removed

The set of record attributes may vary depending on the type of security event and the specifics of the login

process. Attribute assignments in the audit record are shown in the table below:

Assigning attributes to an audit record

Attribute Purpose and possible meanings

id Security event log entry identifier

type Security event type

alt_pswd_cause The reason why the user was asked to change the

password. Possible values:

• password_expired ‐ password expired

• password_reset ‐ password should be

changed at the first login

• password_policy_violated ‐ password
does not comply with password policy

attr_name Installed, deleted or modified attribute name

continues on next page

2.6. Configuration file settings 274

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Attribute Purpose and possible meanings

auth_methods Contains a list of authentication methods passed by

the user. Possible values:

• password ‐ password authentication

• spnego ‐ login using an OS session

• x.509 ‐ login with electronic signature tool

• qrCode ‐ login by QR code

• tls – login using HTTP headers of the proxy

server

• webAuthn ‐ login or login confirmation with

security keys

• css ‐ automatic login based on the results of

user registration or password recovery

• sms ‐ one‐time password by SMS

• email ‐ one‐time email password

• hotp ‐ second factor of authentication with

hardware key fob

• totp is the second factor of authentication us‐
ing the software TOTP confirmation code gen‐

erator

• externalIdps:<type>:<name> ‐ login

using an external identity provider (social net‐

works etc.)

• userApp ‐ secondary authentication in the

mobile application

• outside_%NAME% ‐ external logging in

method named %NAME%

The presence of the prefix cls: before the

method means that the login was performed using a

long‐term session, and that the primary login previ‐

ously used those login methods listed after cls:
auth_soft_id Authenticator application (when logging in by QR

code)

authnDone Whether authentication was performed at this login

captcha_passed An indication that a CAPTCHAwas askedwhen logging

in

client_auth_method A method for authenticating the application that in‐

voked Blitz Identity Provider applications:

• internal ‐ for events invoked by internal

Blitz Identity Provider applications

• x.509 ‐ for events triggered by SAML appli‐

cations, provided that the SAML request came

signed

• Basic ‐ for applications calling REST services

that use Basic authorization

• redirectUri ‐ for applications that have

identified themselves in the URL (e.g., speci‐

fied their client_id in the URL parameter), but

whose authentication has not been performed

(it is not reliably known that this is actually call‐

ing Blitz Identity Provider for this particular ap‐

plication)

• Bearer ‐ using access_token for au‐

thentication by mobile app with dynamic

client_id/client_secret

continues on next page

2.6. Configuration file settings 275

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Attribute Purpose and possible meanings

dcId Dynamic client_id
device device ID

deviceFingerprint Device imprint

dTyp Device type (for dynamic registration)

email E‐mail address

entry_point The type of interface used to register the user:

• WEB ‐ when registering from Blitz Identity

Provider web application,

• REST ‐ when registering via Blitz Identity

Provider REST services.

error Error (for unsuccessful events)

ext_account_id External account ID

ext_account_name Name of the external identity provider

ext_account_type Type of External Identity Provider

failed_method Indicates which authentication method the user was

unable to pass

group_id User group identifier

group_profile User Group Usage Profile Identifier

id_store User profile storage

ip user IP address

ip_ctr Country according to IP address

ip_st Region according to IP address

ip_ct City according to IP address

ip_lat Latitude according to IP address

ip_lng Longitude according to IP address

ip_rad Surrounding by IP address

lp_id The identifier of the application (EntityId for

SAML or client_id for OIDC) that invoked Blitz

Identity Provider.

mobile Mobile phone number

module Identifier of the modified setting block

new_attr_value New value of the installed or modified attribute

new_factor New value of the attribute indicating the necessity to

verify the second authentication factor

new_roles Roles added to the administrator account

oauth_scopes List of authorizations granted or revoked by the user

object_id Identifier of the operation object (user for which the

operation was performed)

old_attr_value Previous value of the deleted or modified attribute

old_factor Previous value of the attribute indicating the need to

verify the second authentication factor

old_roles Roles revoked from the administrator account

origin_app Identifier of the application that initiated user regis‐

tration or password recovery

process_id Process ID

protocol The protocol for the application to communicate with

Blitz Identity Provider. Possible values:

• SAML ‐ for SAML and WS‐Federation

• OAuth ‐ for OpenID Connect and OAuth 2.0

• simple ‐ for proxy authentication‐

• internal ‐ to log in to the User Profile

(_blitz_profile)

continues on next page

2.6. Configuration file settings 276

Blitz Identity Provider, version 5.23

Table 1 – continued from previous page

Attribute Purpose and possible meanings

pswd_changed An indication that a password change was recom‐

mended

pswd_tmp_locked An indication that there was a temporary lockdown

recovery_contact The contact (email or cell phone number) specified

during recovery

recovery_type Password recovery type: email or mobile
right_name Name of access right

roles Administrator account roles

session_id Unique identifier of the user session. Allows you to

correlate all user events performed by the user within

a common user session

subject_id Identifier of the subject of the operation (the user

who invoked the operation)

tags Tag of assigned or revoked access right

timestamp The date and time of the event. For example,

2022-11-04T17:49:58.384+0300
tried_old_pswd An indication that a login attempt was made with a

password from the saved password history (previous

password)

used_login Login used at sign in

user_agent User device data (UserAgent)
wa_key_id Security key identifier

wa_key_name Security key name

withDelay Entry delay was enabled

Storing application settings in separate files

By default, the settings of all connected applications are stored inside the main configuration file blitz.conf
in the blitz.prod.local.idp.apps section. If a large number of applications (hundreds) are to be con‐

nected to Blitz Identity Provider, then keeping application settings in separate configuration files can be more

preferable. For this, you need to:

1. In the/usr/share/identityblitz/blitz-config settings directory, create a root directory that

will store the application settings. By default, the /usr/share/identityblitz/blitz-config/
apps directory will be used.

2. Inside the directory of application settings, create a directory for each application, observing the following

rules:

• the directory name must be created out of the application identifier (appId);

• if the application identifier contains the / character, it must be substituted with # in the directory

name;

• if the application identifier contains the : character, it must be substituted with % in the directory

name.

Note: For example, you need to create the https%##example.com directory for the application

with the https://example.com identifier.

Important: Make sure to create directories for the service applications _blitz_console,
_blitz_idp, _blitz_reg, _blitz_recovery, _blitz_profile.

2.6. Configuration file settings 277

Blitz Identity Provider, version 5.23

3. Inside each application directory, create a file with the name app.conf, containing an application con‐

figuration from the original blitz.conf. The relevant section must be called app and not the appId
value, as it was in blitz.conf. Later on, inside the application directory, a hidden .snapshot direc‐

tory with backups of the old application configurations will also be created after each setting modification

through the console or API.

The example of the app.conf configuration file:

###
→˓###########
version: 822
modified: 2023-08-20 21:17:27 MSK
author: admin
ip: 127.0.0.1
user agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.
→˓36 …
###
→˓###########
{

"app": {
"domain": "https://company.com",
"name": "test app",
"oauth": {

…
},
…

}
}

4. After migrating all existing application settings from blitz.conf to separate configuration files, set the

application setting readingmode in theblitz.prod.local.idp.apps-source section ofblitz.
conf:

"apps-source": {
"type": "filesystem",
"dir": "apps"

}

5. Restart Blitz Identity Provider applications and try to sign in to the applications. If everything is alright, you

can remove the application settings from the original blitz.prod.local.idp.apps block.

SSO session duration

The duration of a user’s SSO session may be affected by the blc cookie validity period on the Blitz Identity

Provider side. By default, the blc cookie validity period is 10800 seconds. If the maximum session duration

(page 60) exceeds this value, a user may be asked to log in again as soon as the cookie expires, even with an

active SSO session.

To adjust the cookie validity period, add the lstateTtlInSec parameter to the blitz.prod.local.
idp.login block of the blitz.conf configuration file with a value equal to or greater than the maximum

session duration.

"lstateTtlInSec" : 20200

2.6. Configuration file settings 278

Blitz Identity Provider, version 5.23

2.6.3 Admin console settings

The admin console is configured using theconsole.conf andcredentials files. The following subsections
describe the possible settings.

Logging in to admin console via SSO

You can configure Blitz Identity Provider admin console to log in via the OIDC Identity Provider. The provider can

be the current installation of Blitz Identity Provider, a custom installation of Blitz Identity Provider, or even an

external software if it is compatible with OIDC.

The following admin console login modes are supported:

• standard mode (page 41) by the account login/password created in the section Administrators;

• login via SSO;

• the hybridmode of logging in when the administrator can log in both by the login/password in the standard

mode and using SSO.

If you are using the SSO mode, you don’t have to create administrator accounts in the section Administrators.

To configure the admin console login mode via SSO, do the following:

• In the SSO identity provider settings, that will be used to log in to the admin console, register the admin con‐

sole as an application. In the allowed return prefixes (redirect_uri) specify the Blitz Identity Provider
installation domain. As a result of the registration, you will get the client_id and client_secret
parameters for the console;

• in the console.conf configuration file, create the login settings block with the following content:

{
"login" : {
"fp" : {

"authUri" : "https://idp-host.com/blitz/oauth/ae",
"clientId" : "blitz-console",
"clientSecret" : "client_secret_value",
"logoutUrl" : "https://idp host.com/blitz/login/logout?post_logout_redirect_

→˓uri=https://idp host.com/blitz/console",
"scopes" : [

"openid"
],
"subjectClaim" : "sub",
"roleClaim" : "roles",
"tokenUri" : "https://idp-host.com/blitz/oauth/te"
},

"mode" : "sso"
}

}

You must specify parameters:

• In the authUri``and ``tokenUri parameters, you must specify the addresses of the Authorization

Endpoint and Token Endpoint handlers of the external identity provider.

• In the clientId and clientSecret parameters, specify the client_id and client_secret values, as‐

signed to the application registered in the external identity provider application that corresponds to the

admin console parameters.

• In the logoutUrl parameter, specify the link to which the user should be redirected user when logging

out of the admin console, so that a single logout via an external identity provider.

• In the scopes parameter, prescribe the list of scopes which must be requested (at least openid scopes

are needed).

2.6. Configuration file settings 279

Blitz Identity Provider, version 5.23

• In subjectClaim specify the name of the attribute from the identity token (id_token) that is used as
the account identifier. Using this identifier the administrator’s login will be performed in sso login mode.

• Specify in roleClaim the attribute name from the identification token (id_token), in which the role

(string) or the role list (array of strings) of the administrator is passed. Using these identifiers the adminis‐

trator’s login will be performed in sso login mode.

• In the mode parameter, you must specify the required login page mode: sso ‐ login only using an external

identity provider (see the figure below); internal ‐ login only using the login and password from the

administration console settings. If the parameter is not specified, both options are available at the user’s

choice. It is not required to create administrator accounts in the Administrators menu prior to logging in

via SSO Logging in via SSO.

To avoid showing an intermediate login screen where the user clicks the Logging in via SSO button, you can in‐

2.6. Configuration file settings 280

Blitz Identity Provider, version 5.23

voke the admin console using a link of the following form: https://hostname:port/blitz/console?
mode=SSO.

Session limit

Security policy may require that a user or administrator cannot be logged in from multiple devices at the same

time. To fulfill this security policy for administrator access to the admin console, the session block must be

added to the console.conf configuration file:

"session" : {
"mode" : "exclusive",
"check-interval" : 10

}

With this setting, if an administrator login is detected with an account that has already logged in, the previous

login will display the login page in the admin console for any action. The check-interval setting (specified

in seconds) specifies the period of time in seconds how quickly the previous session will be logged out when a

new session appears.

If the security policy also requires to prevent multiple sessions for normal users, this mode can be selectively en‐

abled for certain userswhen logging in to certain applications. This can be done by configuring the login procedure

(page 193).

Additionally, in the web application User profile it is necessary to enable the setting according to which an early

log out from the web application will take place in case the user account is blocked or the policy prohibiting mul‐

tiple user logins has been violated. In the blitz.conf configuration file, in the blitz.prod.local.idp.
user-profile settings block, add the check-session-interval setting, which specifies the period of

session activity check by the web application:

"user-profile" : {
"check-session-interval" : 10,
…

}

Roles and permissions for the console

The standard administrator roles are described in the previous sections (page 40). In the credentials config‐

uration file you can create additional administrator roles or correct access rights in existing roles. To do this, in

the roles block, adjust the composition of access rights (privileges) corresponding to the role (name).

Example of configuration:

"roles" : [
{
"name" : "new-role",
"privileges" : ["w_app","w_system","w_ui","w_user","w_admin","r_audit"]

}
]

If new roles are created, text strings with role names (page 234) must also be defined for them. Example of a text

string for a new role new_role:

page.admins.role.new-role=new role name

The list of available access rights for filling the privileges setting is given in the table below.

Blitz Identity Provider admin console access rights

2.6. Configuration file settings 281

Blitz Identity Provider, version 5.23

Access

rights

Available sections of the Admin console

w_app Applications

w_sys-
tem

Data sources, Authentication, Authentication flows, Identity providers, SAML, OAuth 2.0, De‐

vices, Messages

w_ui Self‐services, Login page themes

w_admin Administrators, Events

w_user User search, Group search, Access rights

r_user User search (read‐only), Group search (read‐only), Access rights (read‐only)

r_audit Events (read‐only)

Changing console admin password

To change the console administrator password, do the following:

1. Open the /usr/share/identityblitz/blitz-config/console.conf file.

2. Specify a new password in the pswdHash parameter in plaintext without encryption. The system will

encrypt it after changes are applied.

"users" : [
{

"pswdHash" : "new$password",
"roles" : [

"root"
],
"username" : "admin"

}
]

3. Restart the blitz-console service.

sudo systemctl restart blitz-console

2.6.4 Configuring Token Exchange

Blitz Identity Provider supports the OAuth 2.0 Token Exchange49 technology. A typical usa case of this technology

in Blitz Identity Provider is the interaction of the Blitz Keeper (page 451) security gateway with the authorization

service to gain access to protected services.

To configure Token Exchange, follow the sequence described below.

Step 1. Create service access rules

Token Exchange rules to access protected services are created in the /usr/share/identityblitz/
blitz-config/token_exchange/rules/ directory. Each rule is created as a separate text file without

extension.

Example of a file with an access rule (the specialize type):

{
"name": "rule-name",
"type": "specialize",
"desc": "",

(continues on next page)

49 https://tools.ietf.org/html/rfc8693

2.6. Configuration file settings 282

https://tools.ietf.org/html/rfc8693

Blitz Identity Provider, version 5.23

(continued from previous page)

"subjectTokenCond": {
"clientRights": [],
"userRights": [],
"scopes": ["openid"],
"userClaims": {},
"userGroups": []

},
"issue": {

"ttlInSec": 3600,
"allowedScopes": ["openid","profile"],
"allowedClaims": ["sub","global_role","org_id","rights"],
"addingScopes": [],
"addingClaims": []

}
}

Example of a file with an access rule (the impersonate type):

{
"name": "rule-name",
"type": "impersonate",
"desc": "",
"subjectTokenCond": {

"clientRights": [],
"userRights": [],
"scopes": ["openid"],
"userClaims": {},
"userGroups": []

},
"authClientCond": {

"requiredRights":[
{

"rights": ["right1"],
"target": {

"type": "its",
"name": "app1"

}
}

},
"issue": {

"ttlInSec": 3600,
"allowedScopes": ["openid","profile"],
"allowedClaims": ["sub","global_role","org_id","rights"],
"addingScopes": [],
"addingClaims": []

}
}

Following attributes of the access rule must be set:

• name ‐ name of the rule, which must match the name of the file with the access rule;

• type – type of the rule. The following rule types are supported:

– specialize – according to this rule, an application requests the exchange of an access token issued
to the same application. The exchange is performed for the purpose of specializing the access token:

replacing permissions (scope), attributes (claims), the list of recipients (audience, aud), or the
token format (jwt or opaque);

– impersonate – according to this rule, an application requests the exchange of an access token

issued to another application. The exchange is carried out provided that in the access token being

exchanged, the requesting application is in the list of recipients (audience, aud). Such an exchange is

2.6. Configuration file settings 283

Blitz Identity Provider, version 5.23

used when application A initially received an access token, prepared it for transmission to application

B (via an exchange using thespecialize rule type), passed it on to applicationB, so that application
B issued its own token based on the received one (through an exchange using the impersonate
rule type).

• desc ‐ description of the rule. You can enter any text information;

• subjectTokenCond ‐ conditions of rule fulfillment. If all the conditions specified in the rule are met,

the rule is considered to be executed. If at least one of the conditions in the rule is not fulfilled, the whole

rule is considered unfulfilled. The conditions of rule fulfillment can be as follows:

– clientRights ‐ check if the application has the specified access rights;

Example of the rule:

"clientRights": [
{

"rights": ["right1"],
"target": {
"type": "its",
"name": "app1"
}

}
]

In this example, the calling application checks whether the calling application has the right1 access

right with respect to another application (app1). The its parameter in the target setting spec‐

ifies the type of object against which the access right is checked. Possible values: its ‐ right to an

application; grps ‐ right to an access group; no type ‐ right to a user account.

– userRights ‐ check if the user has the specified access rights.

Example 1 of a rule:

"userRights": [
{

"rights": ["right2"],
"target": {
"type": "grps",
"name": "org1",
"ext": "orgs"
}

}
]

In the example, it checks whether the user has the right2 access right with respect to the user

group (org1). In case of the access group object type, an additional parameter ext is specified to

define the access group profile (see Enabling the display of groups in blitz.conf (page 149)).

Example 2 of a rule:

"userRights": [
{

"rights": ["security_administrator"],
"target": {
"type": "grps",
"name": "${org_id}",
"ext": "orgs"
}

}
]

2.6. Configuration file settings 284

Blitz Identity Provider, version 5.23

This rule checkswhether the user has thesecurity_administrator access rightwith respect to
the user group from the orgs profile, which has an identifier that matches the value of the org_id
attribute from the original access token. In contrast to Example 1, this example illustrates the possi‐

bility to specify not a specific object value as the name of the access right object, but to refer to the

object based on the values from the submitted access token ($org_id).

Example 3 of a rule:

"userRights": [
{

"rights": ["right3"],
"target": {
"type": "its",
"name": "app1"
}

}
]

The above example checks if the user has theright3 access rights with respect to applicationapp1.

– scopes ‐ checks the presence of the required permissions in the access token (see General OAuth

2.0 settings (page 175));

Example of the rule:

"scopes": ["scope1"]

This example checks if the original access token scopes with the name scope1.

– userClaims ‐ checks that the attributes of the user account have specified values.

Example of the rule:

"userClaims": {"role":"FIN"}

This example checks if a user has the role attribute in the account with the FIN value filled in. Only

attributes with String type can be used.

– userGroups ‐ checks if the user account is part of the specified access groups.

Example of the rule:

"userGroups": [
{

"name": "admin",
"profile": "roles"

}
]

This example checks that the user is in the admin access group with roles profile.

• authClientCond – conditions for replacing client_id. These conditions are only checked for the

impersonate rules. The rule verifies that the new application has the permissions to exchange the

access token. The requiredRights condition is supported.

Example of the rule:

"requiredRights":[
{

"rights": ["right1"],
"target": {

"type": "its",
"name": "app1"

(continues on next page)

2.6. Configuration file settings 285

Blitz Identity Provider, version 5.23

(continued from previous page)

}
}

]

In this example, the calling application checks whether the calling application has the right1 access right

with respect to another application (app1). The its parameter in the target setting specifies the type

of object against which the access right is checked. Possible values: its ‐ right to an application; grps ‐

right to an access group; no type ‐ right to a user account.

• issue ‐ rules for issuing a new access token, applied in case the rule was successfully executed. The rules

for issuing a new access token consist of:

– ttlInSec ‐ the lifetime (in seconds) of the issued access token;

– allowedScopes ‐ the scopes that allowed in the issued access token;

– allowedClaims ‐ user attributes that allowed in the issued access token;

– addingScopes ‐ the scopes added to the access token;

– addingClaims ‐ user attributes added to the access token.

Step 2. Configuring access token exchange

To define how access tokens will be exchanged over Token Exchange, specifically for which protected services

which access rules should be applied, add the blitz.prod.local.idp.token-exchange configuration

block to the blitz.conf configuration file as follows:

"token-exchange" : {
"resources" : [
{

"uri" : "http://secured_service_host/api/service1",
"methods" : ["GET","POST"],
"rules" : [

"rule1",
"rule2"

]
},
{

"audience" : "secured-api",
"rules" : [

"rule3"
]

},
…

]
}

In the resources block you need to fill in the settings for each service:

• rules – list the names of service access rules. Each rule corresponds to its own configuration file

(page 282). Access to the service is allowed if at least one of the rules from this list is executed. If all

the listed rules are not met, then access to the service will be denied;

• uri – optional parameter, can specify the address of the protected service. In specifying the service ad‐

dress it is allowed to use an asterisk (*) to skip one component of the address path and a double asterisk

(**) to skip the rest of the service address path;

• methods ‐ optional parameter, specifies the list of HTTP methods of the invoked service;

2.6. Configuration file settings 286

Blitz Identity Provider, version 5.23

• audience – optional parameter, can specify the application name. This value will be included in the

issued new access token in the aud attribute. It is mandatory to specify one of the parameters uri or

audience.

2.7 Security, maintenance, and troubleshooting

2.7.1 Viewing security events

The Events section of the admin console is used to perform security auditing and to view security events logged

in Blitz Identity Provider log. Here you can filter security events by various criteria:

• by user (specifying the user ID is required);

• by time period;

• by application name;

• by groups of events;

• by IP‐address;

• by interaction protocols.

After filters are configured and applied, you can view detailed information about the various security events.

2.7.2 Application performance monitoring

Standard monitoring service

Tomonitor the availability of Blitz Identity Provider applications, invoke the/blitz/metrics service viaHTTP
GET. It is recommended that the service be available on each application server via HTTPwhen invoked from the

monitoring servers located in the internal network and unavailable fromexternal networks and userworkstations.

If an application is available, the /blitz/metrics service will return its detailed performance metrics in the

Prometheus50 format.

50 https://prometheus.io/

2.7. Security, maintenance, and troubleshooting 287

https://prometheus.io/

Blitz Identity Provider, version 5.23

Example of the service response

HELP blitz_idp_uptime_seconds Uptime
TYPE blitz_idp_uptime_seconds gauge
blitz_idp_uptime_seconds{blitz_host="papp01.loc",} 63859.0
HELP blitz_idp_licence_exp_seconds Licence expiration
TYPE blitz_idp_licence_exp_seconds gauge
blitz_idp_licence_exp_seconds{blitz_host="papp01.loc",} 9.223372036854776E18
HELP blitz_idp_config_mtime Last time, a file was changed
TYPE blitz_idp_config_mtime gauge
HELP blitz_idp_datasource_latency Latency of an datasource operation
TYPE blitz_idp_datasource_latency histogram
blitz_idp_datasource_latency_bucket{blitz_host="papp01.loc",ds_type="ldap",ds_name=
→˓"389-ds",op_type="read",le="0.005",} 13.0
…
blitz_idp_datasource_latency_bucket{blitz_host="papp01.loc",ds_type="ldap",ds_name=
→˓"389-ds",op_type="read",le="+Inf",} 29.0
blitz_idp_datasource_latency_count{blitz_host="papp01.loc",ds_type="ldap",ds_name=
→˓"389-ds",op_type="read",} 29.0
blitz_idp_datasource_latency_sum{blitz_host="papp01.loc",ds_type="ldap",ds_name=
→˓"389-ds",op_type="read",} 0.3112787189999999
HELP blitz_idp_mq_connections Amount connections to datasource
TYPE blitz_idp_mq_connections gauge
blitz_idp_mq_connections{blitz_host="papp01.loc",mq_type="rmq",mq_server="pmq01.
→˓loc_5672",} 1.0
HELP blitz_idp_mq_latency Latency of an mq operation
TYPE blitz_idp_mq_latency histogram
blitz_idp_mq_latency_bucket{blitz_host="papp01.loc",mq_type="rmq",mq_server="pmq01.
→˓loc_5672",broker="blitz.events.direct",op_type="write",le="0.005",} 1.0
…
blitz_idp_mq_latency_bucket{blitz_host="papp01.loc",mq_type="rmq",mq_server="pmq01.
→˓loc_5672",broker="blitz.events.direct",op_type="write",le="+Inf",} 3.0
blitz_idp_mq_latency_count{blitz_host="papp01.loc",mq_type="rmq",mq_server="pmq01.
→˓loc_5672",broker="blitz.events.direct",op_type="write",} 3.0
blitz_idp_mq_latency_sum{blitz_host="papp01.loc",mq_type="rmq",mq_server="pmq01.
→˓loc_5672",broker="blitz.events.direct",op_type="write",} 0.028808135999999998
HELP blitz_idp_authn_method_app_total Amount of method authentications by app id
TYPE blitz_idp_authn_method_app_total counter
blitz_idp_authn_method_app_total{blitz_host="papp01.loc",app_id="_blitz_profile",
→˓method="sms",status="success",} 2.0
blitz_idp_authn_method_app_total{blitz_host="papp01.loc",app_id="_blitz_profile",
→˓method="cls",status="other_error",} 7.0
blitz_idp_authn_method_app_total{blitz_host="papp01.loc",app_id="_blitz_profile",
→˓method="password",status="success",} 4.0
blitz_idp_authn_method_app_total{blitz_host="papp01.loc",app_id="_blitz_profile",
→˓method="knownDevice",status="other_error",} 3.0
HELP blitz_idp_authn_method_total Amount of authentications by a method
TYPE blitz_idp_authn_method_total counter
blitz_idp_authn_method_total{blitz_host="papp01.loc",method="password",status=
→˓"success",} 4.0
blitz_idp_authn_method_total{blitz_host="papp01.loc",method="knownDevice",status=
→˓"other_error",} 3.0
blitz_idp_authn_method_total{blitz_host="papp01.loc",method="cls",status="other_
→˓error",} 7.0
blitz_idp_authn_method_total{blitz_host="papp01.loc",method="sms",status="success",
→˓} 2.0
HELP blitz_idp_authn_method_latency Latency of an authentication method
TYPE blitz_idp_authn_method_latency histogram
blitz_idp_authn_method_latency_bucket{blitz_host="papp01.loc",method="sms",le="1.0
→˓",} 0.0
…
blitz_idp_authn_method_latency_bucket{blitz_host="papp01.loc",method="sms",le="+Inf

(continues on next page)

2.7. Security, maintenance, and troubleshooting 288

Blitz Identity Provider, version 5.23

(continued from previous page)

→˓",} 2.0
blitz_idp_authn_method_latency_count{blitz_host="papp01.loc",method="sms",} 2.0
blitz_idp_authn_method_latency_sum{blitz_host="papp01.loc",method="sms",} 28.
→˓686999999999998
blitz_idp_authn_method_latency_bucket{blitz_host="papp01.loc",method="password",le=
→˓"1.0",} 0.0
…
blitz_idp_authn_method_latency_bucket{blitz_host="papp01.loc",method="password",le=
→˓"+Inf",} 4.0
blitz_idp_authn_method_latency_count{blitz_host="papp01.loc",method="password",} 4.
→˓0
blitz_idp_authn_method_latency_sum{blitz_host="papp01.loc",method="password",}␣
→˓1835.901
HELP blitz_idp_datasource_connections Amount connections to datasource
TYPE blitz_idp_datasource_connections gauge
blitz_idp_datasource_connections{blitz_host="papp01.loc",ds_type="ldap",ds_name=
→˓"389-ds",} 10.0
HELP blitz_idp_version Application version
TYPE blitz_idp_version gauge
blitz_idp_version{blitz_host="papp01.loc",part="major",} 5.0
blitz_idp_version{blitz_host="papp01.loc",part="minor",} 16.0
blitz_idp_version{blitz_host="papp01.loc",part="patch",} 1.0
HELP blitz_idp_notify_user_total Amount of user notifications by channel
TYPE blitz_idp_notify_user_total counter
blitz_idp_notify_user_total{blitz_host="papp01.loc",channel="email",} 3.0
blitz_idp_notify_user_total{blitz_host="papp01.loc",channel="sms",} 4.0
blitz_idp_notify_user_total{blitz_host="papp01.loc",channel="push",} 2.0

The name of eachmetric beginswith the application name (the hyphen in the name is replaced by an underscore):

blitz_idp_%%%,blitz_registration_%%%,blitz_recovery_%%%,blitz_console_%%%. The
list of available metrics is given in the table.

2.7. Security, maintenance, and troubleshooting 289

Blitz Identity Provider, version 5.23

Blitz Identity Provider performance metrics

Access rights Type Description

uptime_seconds gauge Time since application start (in

seconds)

licence_exp_seconds gauge Time until license expires

(in seconds)

config_mtime gauge Timestamp of configuration file

last update

datasource_latency histogram Response delays for read andwrite

operations from the account stor‐

age (ldap,jdbc, orcouch type)
mq_connections gauge Number of connections to MQ

(rmq, kafka)
mq_latency histogram Response delays from MQ (rmq,

kafka)
authn_method_app_total counter Number of successful and unsuc‐

cessful authentications into dif‐

ferent applications for each login

method

authn_method_total counter Total number of successful and un‐

successful authentications for dif‐

ferent methods

authn_method_latency histogram Authentication duration for differ‐

ent login methods

datasource_connections gauge Number of connections to stor‐

ages

version gauge Application version

notify_user_total counter Number of notifications sent via

different channels

authn_method_app_created service metrics These metrics (with the _cre-
ated suffix) are generated due to

Prometheus peculiarities and con‐

tain the unix timestamp of

the moment the metric was cre‐

ated

authn_method_created

authn_method_latency_created

datasource_latency_created

mq_latency_created

notify_user_created

Using Grafana and Prometheus

For quick setup of monitoring and visualization of Blitz Identity Provider processes, it is convenient to use the

Prometheus job assignment and the Grafana dashboard template included in the delivery (resources.zip).

Tip: The visual representation of data has a wide range of applications. It can be used by managers to analyze

workflows, engineers to track situations when the number of authentications exceeds a threshold value (alerts

are configured), to monitor the validity of a license, etc. When updating, it is convenient to track the versions of

services on a large number of hosts and the time of their launch.

To set up the visualization, follow these steps:

1. Modify the job assignment prometheus.yaml according to your system configuration and add it to

Prometheus51.

51 https://prometheus.io

2.7. Security, maintenance, and troubleshooting 290

https://prometheus.io

Blitz Identity Provider, version 5.23

2. Modify the dashboard template blitz-dashboard.json. Set up Grafana and add a dashboard52.

Examples of data visualization in Grafana:

2.7.3 Problem solving

Blitz Identity Provider operation logs are written to the /var/log/identityblitz directory on each server.
The event log of each application is named according to the application:

• blitz-console.log ‐ admin console event log;

• blitz-idp.log ‐ authentication service event log;

• blitz-registration.log ‐ registration service event log;

• blitz-recovery.log ‐ access recovery service event log;

• blitz-keeper.log ‐ security gateway event log.

When errors related to Blitz Identity Provider operation occur (logged as[ERROR]), it is recommended to contact

Blitz Identity Provider technical support at support@idblitz.com. When contacting Blitz Identity Provider, please

specify the version of Blitz Identity Provider you are using.

If you need to change the logging level, you need to change the logging levels in the blitz.conf configuration

file in the logger block.

The following logging levels are set by default:

52 https://prometheus.io/docs/visualization/grafana/

2.7. Security, maintenance, and troubleshooting 291

https://prometheus.io/docs/visualization/grafana/
mailto:support@idblitz.com

Blitz Identity Provider, version 5.23

"levels" : {
"ROOT" : "TRACE",
"application" : "TRACE",
"com.couchbase.client" : "INFO",
"com.couchbase.service" : "INFO",
"com.couchbase.endpoint" : "INFO",
"com.couchbase.node": "INFO",
"com.couchbase.tracing": "INFO",
"com.identityblitz" : "TRACE",
"com.identityblitz.idp" : "TRACE",
"com.identityblitz.idp.events" : "TRACE",
"com.identityblitz.idp.flow.dynamic" : "TRACE",
"com.identityblitz.idp.flow.dynamic.extend" : "TRACE",
"com.identityblitz.idp.task.processing" : "DEBUG",
"com.identityblitz.login-framework" : "TRACE",
"com.identityblitz.login-framework.ldap-timings" : "INFO",
"com.identityblitz.login.store" : "TRACE",
"com.identityblitz.idp.rabbitmq" : "INFO",
"com.identityblitz.play.memcached" : "INFO",
"com.identityblitz.play.memcached.RefreshableMemcachedConnection" : "INFO",
"com.unboundid.ldap.sdk" : "TRACE",
"org.asynchttpclient.netty" : "TRACE",
"org.opensaml" : "INFO",
"org.opensaml.util.resource" : "INFO",
"play" : "TRACE",
"plugin.memcached" : "INFO"

}

To change the logging level, the ROOT and all com.identityblitz.* parameters should be assigned the

value TRACE.

If the Blitz Identity Provider configuration change was accidentally made in the admin console, the previous ver‐

sions of the blitz.conf and console.conf configuration files are saved in the hidden /usr/share/
identityblitz/blitz-config/.snapshot directory. You can use these files to roll back to a previous

configuration or to determine differences with the current configuration files.

To find out at what time and by whom a configuration file was changed, comments are placed at the beginning of

the blitz.conf and console.conf configuration files indicating the time of editing and the author of the

changes. An example of an audit record of a configuration file change is given below:

###
→˓#######
modified: 2021-05-09 20:55:55 MSK
author: admin
ip: 0:0:0:0:0:0:0:1
user agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
###
→˓#######

2.7. Security, maintenance, and troubleshooting 292

Blitz Identity Provider, version 5.23

2.7.4 Security gateway

Blitz Keeper (page 451) is a separately installable module that is used as the Blitz Identity Provider security gate‐

way.

2.7. Security, maintenance, and troubleshooting 293

Chapter 3

Integration

3.1 Preparing for integration

3.1.1 Selecting an interaction protocol

When integrating the application with Blitz Identity Provider, one of the interaction protocols should be selected

to identify and authenticate the user:

• OpenID Connect 1.0 (OIDC)53 / OAuth 2.054 is a modern SSO protocol, initially focused onworking with web

and mobile applications on the Internet.

Tip: If a new application is being created, it is recommended to connect it to Blitz Identity Provider using

OIDC/OAuth 2.0.

• SAML 1.0/1.1/2.055 is an SSO protocol that allows you to connect various enterprise software or cloud

applications to the login service.

Attention: The connected application must have built‐in SAML support, or such support can be added

as an additional option or through the installation of an integration connector/plugin.

The choice of protocol largely depends on which application you want to connect:

• if the application supports one of the SSO protocols, then it is worth connecting it using this protocol;

• if the proposal does not support protocols, then it should be finalized – in this case, it is recommended to

support OIDC interaction;

• if the application is just being created, then at this stage it is advisable to support one of the SSO protocols

‐ it is easier to implement OIDC support, however, when using the available SAML libraries, this protocol

can also be used.

The table below shows some of the features of the OIDC and SAML protocols.

53 https://openid.net/specs/openid‐connect‐core‐1_0.html
54 https://tools.ietf.org/html/rfc6749
55 https://www.oasis‐open.org/standards#samlv2.0

294

https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6749
https://www.oasis-open.org/standards#samlv2.0

Blitz Identity Provider, version 5.23

Features of connection protocols

OIDC/OAuth 2.0 SAML 1.0/1.1/2.0

A way to ensure trust between

the application and Blitz Identity

Provider

The secret of the application (usu‐

ally in the form of a string), known

as Blitz Identity Provider

Electronic signature. Both authen‐

tication requests and responses

are signed XML documents

Interaction method Authentication takes place

through the user’s web browser.

To complete authentication, the

backend of the application must

generate an HTTP request to Blitz

Identity Provider

Usually, the authentication re‐

quest and response go through

the user’s web browser. The

application and Blitz Identity

Provider may not have network

connectivity

Getting user information Two ways to get user data:

• The application accesses the

Blitz Identity Provider REST

service and receives user

data in JSON format. The

application can continue to

receive user data evenwhen

the user ends their online

session

• The application receives

user data from the iden‐

tification token (id_token

in the JWT form) received

from Blitz Identity Provider

based on the login results

The user data is contained in the

response to the authentication re‐

quest in XML format. The appli‐

cation can receive data from Blitz

Identity Provider only at the time

of user login

Supported applications Web and mobile applications Web applications

Note: OIDC allows you to implement all the basic SAML scenarios, but it uses a simpler JSON/REST protocol.

A significant advantage of OIDC is the support of mobile applications.

Important: If the application connected to Blitz Identity Provider cannot be finalized, but the application is a web

application deployed in its own infrastructure (on‐premise), then you can connect the application to Blitz Identity

Provider using a web proxy and the Simple protocol (page 181) specially implemented in Blitz Identity Provider.

3.2 OIDC application integration

3.2.1 How to register the application correctly

Authentication in OIDC/OAuth terminology 2.0 is the result of the interaction of three parties:

• the authorization service (Authorization Server) or the resource provider (Resource Server),
which is Blitz Identity Provider;

• the client system (Client), which is an application that requests access to a resource (user information

and data);

• the resource owner (Resource Owner), which is the user, since during authentication he allows access
to data about himself.

3.2. OIDC application integration 295

Blitz Identity Provider, version 5.23

The first stepwhen connecting an application is to register it (page 171) as a client system in Blitz Identity Provider.

Authentication requests will use and take into account the data specified during application registration:

Web application

• application ID (client_id);

• application secret (client_secret).

• permitted return addresses (lists redirect_uri and post_logout_redirect_uri);

• list of requested permissions (scope list);

• information about non‐standard modes required by the application:

– the application needs to receive arefresh_token – by default, therefresh_token application
will not be returned; when selecting this mode, you must additionally specify the required validity

period of refresh_token (by default, the validity period of the token will be 1 day, the maximum

possible ‐ 365 days);

– the application needs to use a non–standard interaction scenario (for example, Implicit Flow,
Hybrid Flow) ‐ by default, the application is allowed to use only Authorization Code
Flow;

– the application needs to receive an access token in the JWT format – by default, the access token is

provided in the opaque format;

– the application needs to receive an access token (access_token) with a non–standard expiration
date ‐ the access token is valid for 1 hour as standard;

• a list of additional attributes that Blitz Identity Provider should add to the identification token (additional

attributes to be passed as part of id_token);

• login mode (login as an individual or as a representative of an organization).

Mobile application

• mobile application ID (software_id);

• initial access token (Initial Access Token);

• application metadata in the form of a JWS token (software_statement).

• permitted return addresses (lists redirect_uri and post_logout_redirect_uri);

• list of requested permissions (scope list);

• non‐standard modes required by the application:

– the application needs to receive arefresh_token – by default, therefresh_token application
will not be returned; when selecting this mode, you must additionally specify the required validity

period of refresh_token (by default, the validity period of the token will be 1 day, the maximum

possible ‐ 365 days);

– the application needs to use a non–standard interaction scenario (for example, Implicit Flow,
Hybrid Flow) ‐ by default, the application is allowed to use only Authorization Code
Flow;

– the application needs to receive an access token in the JWT format – by default, the access token is

provided in the opaque format;

– the application needs to receive an access token (access_token) with a non–standard expiration
date ‐ the access token is valid for 1 hour as standard;

• a list of additional attributes that Blitz Identity Provider should add to the identification token (additional

attributes to be passed as part of id_token);

3.2. OIDC application integration 296

Blitz Identity Provider, version 5.23

• login mode (login as an individual or as a representative of an organization).

Note: When developing a mobile application, you can use both common Initial Access Token‘ and soft-
ware_statement for your iOS/Android implementations, and request different sets of Initial Ac-
cess Token and software_statement for each OS and possibly each edition (phone/tablet) and even
the version of the application. For simplicity of further presentation, the text of the document will im‐

ply that the mobile application uses one common Initial Access Token and one common soft-
ware_statement.

When creating a login function in mobile applications using Blitz Identity Provider, it is recommended to take into

account the following features:

• it is inconvenient for mobile app users to enter their username and password on the authentication Blitz

Identity Provider web page every time they log in. Instead, they are more accustomed to using the PIN

code of the application or Touch ID/Face ID when re‐logging in;

• a user can use his/her Blitz Identity Provider account to log in to multiple installations of the same mobile

application (for example, log in to an application installed on an iPhone and log in to the same application

installed on an iPad). The user should be able to revoke the access rights granted to these application

installations to their information in Blitz Identity Provider;

• for security reasons, it is undesirable to store the application password (client_secret) on the user’s
device (inside the mobile application assembly), which is used to interact the application with Blitz Identity

Provider.

To take into account the above features, Blitz Identity Provider provides a number of specialmechanisms designed

for use by mobile applications.

The recommended scenario for the interaction of a mobile application with Blitz Identity Provider is described in

Connecting a mobile app (page 317).

Below you will find information on how to determine which allowed return addresses, scope permissions, ad‐

ditional attributes in id_token you can set when registering the application in Blitz Identity Provider.

How to determine the return addresses

The request for user identification/authentication contains a return link during authorization (redirect_uri),
where the user should be returned after passing identification/authentication. Valid return links must match the

allowed prefixes registered in Blitz Identity Provider.

If the return link is specified in the identification/authentication request and it does notmatch any of the specified

prefixes, then identification/authentication will be refused.

Depending on the type of connected application, it is recommended to use the following return link prefixes:

• When connecting web applications, the application domain names should be used as the prefixes of the

return links. For example, if after authentication it is required to return the user to https://domain.
com/callback, then the prefix of the return link should be https://domain.com/.

Warning: When connecting to the Blitz Identity Provider production environment, the web appli‐

cation should use only HTTPS handlers as redirect_uri and post_logout_redirect_uri.
Using HTTP to interact with the Blitz Identity Provider production environment is prohibited.

• When connecting mobile applications, it is recommended to specify the return links themselves as prefixes

of one of the types: links of the private‑use URI scheme» type (for example, com.example.
app:/oauth2redirect/example‑provider type) or links of the Universal links type (for

example, https://app.example.com/oauth2redirect/example-provider).

3.2. OIDC application integration 297

Blitz Identity Provider, version 5.23

Note: Links like Universal links are available starting from iOS 9 and Android 6.0 and are pre‐

ferred for use. It is recommended to use the private-use URI scheme links only if the applica‐

tion should run on earlier versions of iOS/Android.

The logout request contains a return link during the logout (post_logout_redirect_uri). This link indi‐
cates where the user should be returned after a successful logout. Valid return links must match the allowed

prefixes registered in Blitz Identity Provider (the prefix must contain the domain name of the application and part

of the path, at least, https://domain.com/). If a return link is specified in the logout request and it does

not match any of the specified prefixes, an error will be displayed.

What permissions can be requested

Permissions (scope in OIDC/OAuth 2.0 terminology) determine which data and which rights to perform which

operations the application will receive based on authentication results.

The list of permissions provided in Blitz Identity Provider is shown in the table.

Available permissions (scope)

Permission Description Composition of the received attributes

openid A technical authorization in‐

dicating that authentication is

performed according to the

OIDC specification

When requesting this scope, Blitz Identity Provider
provides the application with an id_token. From

the id_token the application can get the necessary
user attributes (page 309).

profile Basic user profile data List of data:

• sub is a unique identifier

• family_name is a surname

• given_name is a given name

• middle_name is a middle name

• email is a business email address

• phone_number is a mobile phone number

usr_grps Getting a list of user groups groups is a list of groups that the user is included in.
Each entry in the list includes the following attributes

of the organization:

• id is the ID of the group

• name is the name of the group

native Permission to perform

end‐to‐end login to the

web application from the

mobile application

Relevant only formobile applications (page 324).

What additional attributes can be included in the id_token

There is usually no need to get user attributes directly from the identification token (id_token) – a simpler and

recommended way is to get user data (page 333) through a REST service call.

If you still need to get information about the user from id_token (page 309), then the available attributes are

selected from the following list.

3.2. OIDC application integration 298

Blitz Identity Provider, version 5.23

Possible additional user attributes in id_token

Attribute Description

family_name Last name

given_name Name

middle_name Patronymic

email E‐mail address

phone_number Mobile phone

Tip: Blitz Identity Provider also allows you to place application design elements on the Blitz Identity Provider

login page. If you want to create a personalized login page for the connected system, you need to adapt the

template for the design of the login page to the design of the connected system. The template for the design of

the login page is a zip archive, inside which the HTML framework of the login page and the stylesheet, images,

and JavaScript handlers used on the page are recorded.

The prepared archive of the login page theme should be uploaded (page 221) to Blitz Identity Provider.

3.2.2 Connecting a web application

Tip: See the description (page 162) of the interaction between a web application and Blitz Identity Provider via

OIDC.

Connection settings

To connect a mobile application to Blitz Identity Provider, you will need the data obtained when registering it in

product (page 295):

• the identifier assigned to the application in Blitz Identity Provider (client_id);

• the secret of the application (client_secret);

• return URLs registered for the application during authorization;

• logout return URLs registered for the application;

• the permissions registered for the application (scope).

In order to interact with Blitz Identity Provider, the web application must use the following addresses:

• URL for authorization and authentication:

– https://login-test.company.com/blitz/oauth/ae (test environment)

– https://login.company.com/blitz/oauth/ae (production environment)

• URL for getting and updating the access token:

– https://login-test.company.com/blitz/oauth/te (test environment)

– https://login.company.com/blitz/oauth/te (production environment)

• URL for getting user data:

– https://login-test.company.com/blitz/oauth/me (test environment)

– https://login.company.com/blitz/oauth/me (production environment))

• URL for getting access token data:

– https://login-test.company.com/blitz/oauth/introspect (test environment)

3.2. OIDC application integration 299

Blitz Identity Provider, version 5.23

– https://login.company.com/blitz/oauth/introspect (production environment)

• URL for performing the logout:

– https://login-test.company.com/blitz/oauth/logout (test environment)

– https://login.company.com/blitz/oauth/logout (production environment)

All these URLs, as well as additional information, are located at the address of dynamically updated settings

(metadata) of each Blitz Identity Provider environment:

Tip: See RFC 8414 OAuth 2.0 Authorization Server Metadata56.

• https://login-test.company.com/blitz/.well-known/openid-configuration
(test environment)

• https://login.company.com/blitz/.well-known/openid-configuration (produc‐

tive environment)

Application developers can use a single link to Blitz Identity Provider metadata instead of listing all of the URLs in

their application’s configuration.

Ready‐made libraries

To integrate an application with Blitz Identity Provider, you can use one of the many ready‐made OAuth 2.0 li‐

braries57 or implement the interaction yourself.

Getting the authorization code

To identify and authenticate the user, the application must direct the user to the URL to receive the authorization

code in Blitz Identity Provider, passing as parameters:

• client_id is the client’s ID;

• response_type – response type (takes the value code, token, code token, code id_token,
code id_token token, id_token token, id_token);

Important: The value of the response_type parameter indicates the way the application has chosen to

interact with Blitz Identity Provider:

– code – Authorization Code Flow;

– code token, code id_token token, code id_token token – Hybrid Flow;

– id_token token, id_token – OIDC Implicit Flow;

– token – OAuth 2.0 Implicit Flow.

• response_mode (optional parameter) – allows you to explicitly specify the required method of trans‐

mitting the authorization code. When the application is normally connected to Blitz Identity Provider, this

parameter should not be transmitted, since it is recommended to use standardmethods of transmitting the

authorization code (query – for Authorization Code Flow and fragment – for Implicit/Hybrid

Flow).

Possible values of the response_mode parameter:

– query – the value of the authorization code (code) is returned to the redirect_uri of the ap‐

plication in the form of a query parameter. The standard mode for Authorization Code Flow.

56 https://tools.ietf.org/html/rfc8414
57 https://oauth.net/code/#client‐libraries

3.2. OIDC application integration 300

https://tools.ietf.org/html/rfc8414
https://oauth.net/code/#client-libraries
https://oauth.net/code/#client-libraries

Blitz Identity Provider, version 5.23

– fragment – the value of the authorization code (code) is returned to the redirect_uri of the

application in the form of a fragment parameter (#). The standard mode for Implicit Flow.

– form_post – in this mode, the authorization response parameters are encoded as HTML form

values, which are automatically sent to the User Agent and transmitted to the client via the HTTP

POST method, while the resulting parameters are encoded in the body using the application/
x-www-form-urlencoded format.

• scope – the requested permissions, for authentication, the openid permission and the necessary ad‐

ditional scope must be passed to receive user data, for example, profile (when multiple scopes are

requested, they are transmitted in one line and separated from each other by a space);

• redirect_uri is a link to return the user to the application, the link must match one of the registered

values;

• state is a set of random characters in the form of a 128‐bit request identifier (used to protect against

interception), the same value will be returned in the response – an optional parameter;

• access_type (optional parameter) – whether the application needs to receive refresh_token,
which is necessary to obtain information about the user in the future when the user is offline. Takes

the value online or offline, refresh_token is provided when access_type=offline. If the
value is not set, then the behavior is determined by the setting set for the specified application in Blitz

Identity Provider;

• prompt (optional parameter) – specifies Blitz Identity Provider the required login mode. Possible values

of the prompt parameter:

– none is a ban on authentication.

If, when executing a request, Blitz Identity Provider needs to display the identification/authentication

request screen to the user, Blitz Identity Provider will not do this, but will return the login_re-
quired error to the system on its redirect_uri. A call with the prompt=none parameter

should be made if the application wants to check if the user has a Blitz Identity Provider session, but

does not want the user to see the Blitz Identity Provider login screen when performing such a check.

– select_account – request to change the current user.

Blitz Identity Provider will display an account selection screen to the user so that the user can log in

with a different account.

– login is a ban on SSO.

If, when executing the request, Blitz Identity Provider finds out that the user has already been

identified/authenticated before, then Blitz Identity Provider will explicitly require the user to

re‐identify/authenticate. At the same time, Blitz Identity Provider additionally checks that the login

will be performed by the same user whose user session is open.

If, during re‐identification/authentication, the user logs in with a different account, Blitz Identity

Provider returns the login_required error to the system on its redirect_uri. A call with the

prompt=login parameter should be made if the application wants to explicitly request identifica‐

tion/authentication from the user, for example, when accessing an application function that requires

increased protection.

Note: For prompt=login for the application, if necessary, you can enable a different scenario for

processing the situation that the user logged in with a different account than he was previously logged

in to the session. Namely, you can enable that when prompt=login is called, the current session is

forcibly logged out and the session is created under a new account. This behavior is not recommended,

but can be enabled for the application on a separate request.

• nonce (optional parameter) is a string used to bind an application session to an identification token. When

the application is connected to Blitz Identity Provider using Authorization Code Flow as standard, there is

no need to use the nonce parameter.

3.2. OIDC application integration 301

Blitz Identity Provider, version 5.23

When connecting via Implicit Flow or Hybrid Flow, this parameter must be passed. The nonce value must

be a random text string.

• display (optional parameter) – the parameter in the script value is passed only if the login process is

started via HTTP API (page 432).

• bip_action_hint (optional parameter) – specifies Blitz Identity Provider that the login page should

open in one of the special modes:

– open_reg – open in user registration mode; when using this mode, you can additionally specify the

login_hint parameter with the user’s email value, and then the “Email address” field will be filled

with the specified email value;

– open_recovery – open in password recovery mode; when using this mode, you can additionally

specify the login_hint‘ parameter with the value of the user’s email, and then the “Login” field will be

filled with the specified email value;

– used_externalIdps:apple:apple_1 – open in Apple ID login mode;

– used_externalIdps:facebook:facebook_1 – open in Facebook login mode1;

– used_externalIdps:google:google_1 – open in Google login mode;

– used_password – open in password login mode (default behavior);

– used_webAuthn – open in login mode using the FIDO2 key (Passkey);

– used_x509 – open in the login mode by electronic signature;

– used_qrCode – open in QR code login mode;

– used_spnego – open in login mode by operating system session;

– used_sms – open in the login mode by SMS code;

– used_outside_methodname –open in loginmode via an external authenticationmethodnamed

methodname.

• bip_user_hint (optional parameter) – the identifier (sub) of the user account is passed, which should

be selected automatically when the login screen is opened.

The ID must match one of the accounts stored on the device, or the login page will be opened in the new

user login mode;

• login_hint (optional parameter) – a value is passed that must be filled in the login field if the login page

is open in the new user login mode.

If you need to fill in the login in the case when there is already a remembered user, then you need to use

the login_hint parameter in combination with the bip_user_hint parameter;

• bip_extIdps_user_choose_hint (optional parameter) – the identifier (sub) of the user account is

passed, which should be selected automatically if the user logs in through an external identificationprovider

to which several Blitz Identity Provider accounts are linked;

• code_challenge_method (optional parameter) – the value “S256” is passed if the connected appli‐

cation supports the PKCE specification for additional protection of interaction with Blitz Identity Provider.

Tip: See RFC 7636 Proof Key for Code Exchange by OAuth Public Clients58.

PKCE is not required to connect web applications.

PKCE must be used to connect mobile applications to Blitz Identity Provider.

1 Meta is recognized as an extremist organization and is banned in Russia, while the activities of its social networks Facebook and Instagram

are also banned in Russia.
58 https://tools.ietf.org/html/rfc7636

3.2. OIDC application integration 302

https://tools.ietf.org/html/rfc7636

Blitz Identity Provider, version 5.23

• code_challenge (optional parameter) – when using PKCE, the value calculated from code_veri-
fier is passed to this parameter using the following formula:

Tip: When debugging, it is convenient to use the online calculator59.

code_challenge=BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

Note: It is forbidden to open the login page in the frame. The user should see the URL of the login page,

and also be able to verify that the HTTPS connection is available by theweb portal“login.company.com“.

Example of a request to receive an authorization code (identification/authentication and access token with

openid and profile permissions were requested):

https://login.company.com/blitz/oauth/ae?client_id=ais&response_type=code&
→˓scope=openid+profile&access_type=offline&state=342a2c0c-d9ef-4cd6-b328-
→˓b67d9baf6a7f&redirect_uri=https%3A%2F%2Fapp.company.com%2Fre

An example of a response with the value of the authorization code (code) and the state parameter:

https://app.company.com/re?code=f954…nS0&state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f

Possible errors when calling /oauth/ae comply with RFC 6749 and are described here60.

An example of a request for an authorization code in which Blitz Identity Provider should not open the login page

if the user has not yet been identified/authenticated in the current web browser:

https://login.company.com/blitz/oauth/ae?client_id=ais&response_type=code&
→˓scope=openid+profile&access_type=offline&state=342a2c0c-d9ef-4cd6-b328-
→˓b67d9baf6a7f&prompt=none&redirect_uri=https%3A%2F%2Fapp.company.com%2Fre

An example of an error response if, in order to receive the authorization code, the user must explicitly pass

identification/authentication on the Blitz Identity Provider login page, and the request was executed with the

prompt=none parameter:

https://app.company.com/re?error=login_required&error_
→˓description=The+Authorization+Server+requires+End-User+authentication…&
→˓state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f

Example of a request for an access token and an identification token using OIDC Implicit Flow:

https://login.company.com/blitz/oauth/ae?client_id=ais&response_type=id_token
→˓%20token&scope=openid+profile&state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f&nonce=n-
→˓0S6_WzA2Mj&redirect_uri=https%3A%2F%2Fapp.company.com%2Fre

An example of a response from Blitz Identity Provider with access and identification tokens obtained using OIDC

Implicit Flow:

https://app.company.com/re#access_token=SlAV32hkKG&token_type=Bearer&id_
→˓token=eyJ0…NiJ9.eyJ1c…I6IjIifX0.DeWt4Qu…ZXso&expires_in=3600&state=342a2c0c-d9ef-
→˓4cd6-b328-b67d9baf6a7f

Example of a request for an authorization code and an identification token using OIDC Hybrid Flow:

59 https://example‐app.com/pkce
60 https://tools.ietf.org/html/rfc6749#section‐4.1.2.1

3.2. OIDC application integration 303

https://example-app.com/pkce
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

Blitz Identity Provider, version 5.23

https://login.company.com/blitz/oauth/ae?client_id=ais&response_type=code%20id_
→˓token&scope=openid+profile&state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f&nonce=n-
→˓0S6_WzA2Mj&redirect_uri=https%3A%2F%2Fapp.company.com%2Fre

An example of a response from Blitz Identity Provider with access and identification tokens obtained using OIDC

Hybrid Flow:

https://app.company.com/re#code=f954…FxS0&id_token=eyJ0…NiJ9.eyJ1c…I6IjIifX0.
→˓DeWt4Qu…ZXso&state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f

Getting tokens

In order to carry out the result of identification/authentication of the user and obtain his data, Blitz Identity

Provider issues various tokens to the application.

Tokens used in Blitz Identity Provider

Name Designation Purpose and validity period

Access token access_token Getting access to a protected resource, for example,

user data.

The token is valid for 3600 seconds.

Refresh token refresh_token Updating the access token. The refresh_token
token is provided only if the application specified the

need to receive a refresh_token during registra‐

tion, or if the access_type=offline parame‐

ter was specified in the request for an authorization

code.

The token is valid until the moment of use, but no

longer than 365 days.

ID token id_token Obtaining identification information, for example, a

user ID.

The token is valid for 3 hours.

Exchange of the authorization code for tokens

After receiving the authorization code, the application must exchange it for tokens.

Attention: The token collection service must be called from the servers of the application connected to Blitz

Identity Provider. Calling the service from the program code executed on the side of the web browser (for ex‐

ample, from the JavaScript code of a web page) is PROHIBITED. The received access token (access_token)
must be processed by the backend of the application andmust not be transmitted through the user’s browser.

Method POST https://login.company.com/blitz/oauth/te

Headers Authorization with the value Basic {secret}, where secret is

client_id:client_secret (for example, app:topsecret) in Base64 format.

Request body

• code – the value of the authorization code that was previously received;

• grant_type – takes the value authorization_code, if the authorization code is exchanged for an
access token;

3.2. OIDC application integration 304

Blitz Identity Provider, version 5.23

• redirect_uri – the link to which the user should be directed after giving permission for access (the

same value that was specified in the request for an authorization code);

• code_verifier (only if PKCE is used) is the value of the verification code used in calculating the

code_challenge when receiving the authorization code.

Returns

• If successful, an access token, an update token, and an identification token.

Tip: Using the received access token, the application can request (page 333) up‐to‐date user data from

Blitz Identity Provider.

• If the authorization code has already been used, the redirect_uri did not match the one previously

used in the call to /oauth/ae, or the code expired, or the code_verifier passed does not match

code_challenge, an error will be returned as a response. Possible errors when calling /oauth/te
comply with RFC 6749 and are described here61.

Examples

Request

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9ydGFsLmlhc2l1LmxvY2FsOnBvcnRhbC5pYXNpdS5sb2NhbA==
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=FLZHS…GU&redirect_uri=https%3A%2F%2Fapp.company.
→˓com%2Fre

Response

{
"id_token": "eyJhbGciOiJSUzI1NiJ9.eyJub…n0=.Ckt…sQ",
"access_token": "dO-xym…BE",
"expires_in": 3600,
"refresh_token": "1lEWX…Iw",
"token_type": "Bearer"

}

Error

{
"error": "invalid_grant",
"error_description": "The provided authorization grant … is invalid, expired,␣

→˓revoked…"
}

61 https://tools.ietf.org/html/rfc6749#section‐5.2

3.2. OIDC application integration 305

https://tools.ietf.org/html/rfc6749#section-5.2

Blitz Identity Provider, version 5.23

Updating the access token

Method POST https://login.company.com/blitz/oauth/te

Headers Authorization with the value Basic {secret}, where secret is

client_id:client_secret (for example, app:topsecret) in Base64 format.

Request body

• refresh_token is refresh token;

• grant_type – takes the value“refresh_token“ if the refresh token is exchanged for an access token.

Listing 1: Request example

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9ydGFsLmlhc2l1LmxvY2FsOnBvcnRhbC5pYXNpdS5sb2NhbA==
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=jj2DA…bQ

Exchanging an access token

An application can exchange anaccess_tokenwith one set of permissions (scopes) and claims (claims) for
an access_tokenwith another set of permissions and claims using the OAuth 2.0 Token Exchange62. This can

be useful before transferring the access_token from the application that received it to another application,

so that the application receives a reduced set of permissions and user information.

Attention: To use the access token exchange, the application must be granted special permission to use the

OAuth 2.0 Token Exchange (urn:ietf:params:oauth:grant-type:token-exchange is allowed).
The settings for the access token exchange rules must also be set.

Method POST https://login.company.com/blitz/oauth/te

Headers Authorization with the value Basic {secret}, where secret is

client_id:client_secret (for example, app:topsecret) in Base64 format.

Request body

Attention: One of the resource or audience parameters must be specified.

• grant_type – takes the value urn:ietf:params:oauth:grant-type:token-exchange.

• resource – takes the name of the resource for which the exchange of the access token is requested.

• audience – takes the names of applications for which an access token is requested.

• subject_token_type – the required type of the received token is passed. In the current version of

Blitz Identity Provider, only the urn:ietf:params:oauth:token-type:access_token type is

supported.

• subject_token – the value of the replaced access token (access_token) is passed.

• Optional parameter scope – specifies the list of requested scope in the new token. If this parameter is

not specified, then all the scope allowed by the exchange rule will be included in the new token.

• Optional parameter token_format – specifies the required format for the issued access token. Possible

values: jwt or opaque. If this parameter is omitted, the new access token will be issued in the same

format as the access token passed to subject_token.

62 https://www.rfc‐editor.org/rfc/rfc8693.txt

3.2. OIDC application integration 306

https://www.rfc-editor.org/rfc/rfc8693.txt

Blitz Identity Provider, version 5.23

Examples

Request

Listing 2: Standard request

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9…A==
Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:token-exchange&resource=…&subject_
→˓token_type=urn:ietf:params:oauth:token-type:access_token&subject_token=eyJ…vA

Listing 3: Request with transmission of audience, token_format and

scope

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9…A==
Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:token-exchange&token_format=opawue&
→˓audience=system1 system2&scope=openid profile&subject_token_
→˓type=urn:ietf:params:oauth:token-type:access_token&subject_token=uuy…OE

Response

{
"access_token": "eyJr...-g",
"expires_in": 3600,
"scope": "openid new_scope",
"token_type": "Bearer",
"issued_token_type": "urn:ietf:params:oauth:token_type:access_token"

}

Error

Listing 4: No rules were found to allow the requested access token ex‐

change

{
"error": "invalid_target",
"error_description": "Access denied for resource or audience"

}

3.2. OIDC application integration 307

Blitz Identity Provider, version 5.23

Listing 5: The access token has expired

{
"error": "bad_access_token",
"error_description": "Access token 'CmJ…Dk' not found"

}

Using OAuth 2.0 Resource Owner Password Credentials

If the application has been granted special permission to use OAuth 2.0 Resource Owner Password Credentials

(ROPC) (grant_type – password‘ is allowed), then the application can request an access token as follows.

Method POST https://login.company.com/blitz/oauth/te

Headers Authorization with the value Basic {secret}, where secret is

client_id:client_secret (for example, app:topsecret) in Base64 format.

Request body

• grant_type – takes the value password;

• username – contains the username of the user;

• password – contains the user’s password;

• scope – contains a list of requested permissions.

Returns

• If successful, an access token.

• In case of failure, an error. Possible values for error_description in case of an account problem:

– Invalid user credentials – invalid username or password;

– User_locked ‐ account locked;

– User locked by inactivity – the account is blocked due to prolonged inactivity;

– Password method locked – a ban on using password authentication is enabled for the account;

– Password method not configured – the password authentication method is not config‐

ured;

– Password expired – the password has expired;

– Need password change – a mandatory password change is required when logging in.

Request

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9…A==
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=testuser&password=testpwd1&scope=profile

3.2. OIDC application integration 308

Blitz Identity Provider, version 5.23

Response

{
"access_token": "dO-xym…BE",
"expires_in": 3600,
"scope": "profile",
"token_type": "Bearer"

}

Error

{
"error": "invalid_grant",
"error_description": "Invalid user credentials"

}

ID token

To obtain identification and authentication data, the application can independently analyze the content of the ID

token (id_token).

Tip: Instead of analyzing the id_token , it is recommended to use a request to updating user data (page 333)

by access token.

Token structure The ID token consists of three parts:

• the header (header)„ which contains general information about the type of token, including the crypto‐

graphic operations used during its formation;

• a set of statements (payload / claim set) with meaningful information about the token;

• a signature (signature) that certifies that the token was issued by Blitz Identity Provider and was not

changed during transmission.

The parts of the token are separated by a dot, it looks like:

HEADER.PAYLOAD.SIGNATURE

The token is passed as a string in the Base64url format.

Token header

• alg – description of the encryption algorithm (parameter alg); currently Blitz Identity Provider supports
the electronic signature algorithm RSA SHA-256 recommended by the specification (corresponds to the

value RS256);

• kid – ID of the key used to sign the token.

Set of statements Attributes:

• exp is the time of expiration, indicated in seconds from January 1, 1970. 00:00:00 GMT;

• iat is the time of issue, indicated in seconds from January 1, 1970. 00:00:00 GMT;

• sub is the identifier of the subject, the value of the user ID is specified as the value;

• ua_id is the user’s device identifier;

• aud is the recipient of the token, the client_id of the application that sent the authentication request

is indicated;

3.2. OIDC application integration 309

Blitz Identity Provider, version 5.23

• iss – the organization that issued the token, specify the issuer URL, https://login.company.
com/blitz by default;

• nonce is a security string, the value nonce is specified, which was passed by the application to Blitz

Identity Provider in the original request to /oauth/ae. It is used only with Implicit or Hybrid Flow. When

an application receives a token using Implicit or Hybrid Flow, the application must match nonce from the

identification token with nonce from its request;

• at_hash is half of the hash of the access token, transmitted only when using Implicit or Hybrid Flow. It

represents the Base64 encoded left half of the value of the SHA‐256 function from access_token. An
application that receives an access token using Implicit or Hybrid Flow must extract the value at_hash
from the identification token and compare it with the access token.

• c_hash is half of the hash of the authorization code, transmitted only if Hybrid Flow is used. It is the

Base64 encoded left half (128 bits) of the SHA‐256 function value from the authorization code (code); An
application that receives an authorization code using Hybrid Flowmust extract the value c_hash from the

identification token and compare it with the authorization code.

• amr – authentication methods passed, a list of authentication methods passed by the user is indicated.

The list may include the following method identifiers:

– password – login using a password;

– cls:<method>` (for example, ``cls:password) – automatic login from a memorized

device (in the name of the identifier, after the colon, the authentication method initially passed by

the user is indicated, as a result of which the user was memorized on this device);

– css – automatic login based on the results of user registration, password recovery, or switching to a

web application from a mobile application using a call using scope=native;

– sms – confirmation of login using the code in the SMS message (the second authentication factor);

– email – confirmationof login using the code in the emailmessage (the second authentication factor);

– push – confirmation of login using the code in the push notification to the mobile application (the

second authentication factor);

– hotp – login confirmation using a code generated by the HOTP confirmation code generator (the

second authentication factor);

– totp – confirmation of login using a code generated by the software TOTP‐generator of confirmation

codes (the second authentication factor);

– tls – login in automatic authentication mode using TLS Proxy;

– spnego – login using an operating system session;

– userApp – login to the mobile application with a user account linked to the device (Touch ID/Face

ID/PIN);

– webAuthn – login using a FIDO2 key (Passkey) or login confirmation using a U2F key;

– x509 – login using an electronic signature;

– qrCode ‐ login via QR code;

– externalIdps:apple:apple_1 – login using an Apple ID account;

– externalIdps:facebook:facebook_1 – login using a Facebook accountPage 302, 1;

– externalIdps:google:google_1– login using a Google account;

– externalIdps:mail:mail_1 – login using the Mail ID account;

– externalIdps:vkid:vkid_1 – login using VK ID account;

– externalIdps:ok:ok_1 – login using an account on the Odnoklassniki social network;

– externalIdps:vk:vk_1 – login using a VK social network account;

– externalIdps:yandex:yandex_1 – login using a Yandex account;

3.2. OIDC application integration 310

Blitz Identity Provider, version 5.23

– outside_methodname – indicates that the user used an external authentication method named

methodname during the login process.

• sid is the user’s session ID;

• additional attributes in accordance with the request to connect the application to Blitz Identity Provider

(see possible attributes to include in id_token here (page 298)).

Listing 6: Example of a set of statements

{
"exp": 1445004777,
"iat": 1444994212,
"ua_id": "f8a235ff-cb85-4c4b-b55d-544f9358a8d7",
"sub": "3d10f626-ea77-481d-a50bd4a4d432d86b",
"amr": [

"externalIdps:esia:esia_1"
],
"aud": [

"ais"
],
"iss": "https://login.company.com/blitz",
"sid": "5a600d12-4b14-447e-ba21-2dc40344a44a"

}

Token signature It is performed according to the algorithm specified in the alg parameter of the token. The

signature is calculated from the two previous parts of the token (HEADER.PAYLOAD‘). The Blitz Identity Provider

public key certificate required to verify the signature can be downloaded from the following links (located in the

x5c, attribute, key ID is located in the kid attribute):

• https://login-test.company.com/blitz/.well-known/jwks (test environment)

• https://login.company.com/blitz/.well-known/jwks (production environment)

Working with an ID token

1. After receiving the ID token, the application is recommended to validate the ID token, which includes the

following checks:

1. Obtaining the Blitz Identity Provider (sub) identifier contained in the ID token and obtaining other

additional user attributes required by the application.

2. Verification of the application identifier, i.e. it is the application that must be specified as the recipient

of the ID token.

3. Verification of the signature of the ID token (using the algorithm specified in the token).

4. Verification that the current time should be no later than the expiration time of the ID token.

After validating the ID token, the application can consider the user authenticated.

2. To analyze the content of the ID token, as well as to simplify the development ofmodules for its verification,

you can use the available online decoders and libraries.

Tip: See resources http://jwt.io/ and http://kjur.github.io/jsjws/mobile/tool_jwt.html#verifier.

3.2. OIDC application integration 311

http://jwt.io/
http://kjur.github.io/jsjws/mobile/tool_jwt.html#verifier

Blitz Identity Provider, version 5.23

Checking the access token through the introspection service

The access token data (access_token) must be checked in the following cases:

• the application needs to track the expiration date of the token in order to quickly change it to a new one;

• the application has increased security requirements, and the application wants to check the token to make

sure that the token is not canceled prematurely. Revocation of the access token (access_token) or ID
token (id_token) may occur for security purposes if the user account password has been reset/changed

or if the user account has been blocked;

• the application is a resource provider and provides access to these resources upon presentation of an access

token issued by Blitz Identity Provider to the application requesting the resource.

Method POST https://login.company.com/blitz/oauth/introspect

Tip: See RFC 7662 OAuth 2.0 Token Introspection63.

The introspection service can be called by any system registered in Blitz Identity Provider to verify any access

token (the system can verify a token issued to another system). You can check not only the access token, but also

the refresh token.

Headers

• Authorization with the value Basic {secret}, where secret is client_id:client_se-
cret (for example, app:topsecret) in Base64 format;

• Content-Type with the value application/x-www-form-urlencoded.

Request body

• token s the access token that you want to view the data about.

• Optional parameter ‘ “token_type_hint‘ is the type of access token (for example,“access_token“), designed

to speed up the search.

Returns Access token data:

• active is an indication of the validity of the access token, it takes the values true or false. The token
is valid if it was issued by the authorization service Blitz Identity Provider, has not been revoked and its

validity has not expired;

• scope is the access area towhich the access token has been issued. It is transmitted as a list of permissions;

• client_id is the identifier of the client system that received this access token;

• sub is the identifier of the user (the owner of the resource that provided access to their data), defined as

the base identifier in Blitz Identity Provider. The parameter value is returned only if it can be passed within

the scope of the presented access token;

• jti is the identifier of the access token (in the form of a string);

• token_type is the type of the presented access token;

• iat is the time when the token was issued (in Unix Epoch);

• exp is the expiration time of the token (in Unix Epoch).

63 https://tools.ietf.org/html/rfc7662

3.2. OIDC application integration 312

https://tools.ietf.org/html/rfc7662

Blitz Identity Provider, version 5.23

Examples

Request

POST /blitz/oauth/introspect HTTP/1.1
Authorization: Basic cG9ydGFsLmlhc2l1LmxvY2FsOnBvcnRhbC5pYXNpdS5sb2NhbA==
Content-Type: application/x-www-form-urlencoded

token=MkvRf…No

Response

Listing 7: Valid access_token

{
"sub": "3d10f626-ea77-481d-a50bd4a4d432d86b",
"scope": "openid profile",
"jti": "10jdlNohfHzuv3xoFurvWSPheEJEC7KHdHr-dcaVyYYvV3h0l2sh",
"token_type": "Bearer",
"client_id": "ais",
"active": true,
"iat": 1699938503,
"exp": 1699942103

}

Listing 8: Valid id_token

{
"exp": 1699939472,
"iat": 1699935872,
"jti": "fU2FTCzm9G5I4YC6VDFnfjFY5QeIULwHlYo_BH6OuCQ",
"token_type": "id_token",
"active": true,
"client_id": "ais",
"sub": "3d10f626-ea77-481d-a50bd4a4d432d86b"

}

Listing 9: Valid refresh_token

{
"sub": "3d10f626-ea77-481d-a50bd4a4d432d86b",
"scope": "openid profile",
"jti": "10jdlNohfHzuv3xoFurvWSPheEJEC7KHdHr-dcaVyYYvV3h0l2sh",
"token_type": "refresh_token",
"client_id": "ais",
"active": true,
"iat": 1699938503,
"exp": 1699942103

}

3.2. OIDC application integration 313

Blitz Identity Provider, version 5.23

Listing 10: Invalid access token

{
"active": false

}

Verification of the access token by the application

When registering an application in Blitz Identity Provider, you can specify that the application should receive an

access token (access_token) in the JWT format. In this case, the application gets the opportunity to indepen‐

dently verify the access token by parsing it.

The structure of the initially received access token will be similar to the structure of this identification to‐

ken (page 309). The secondary access tokens obtained as a result of the exchange of the refresh token

(refresh_token) will not contain session information (amr and additional user attributes will be missing).

Access tokens in the JWT format should be used only if the application has special reasons for doing so. In other

cases, it is recommended to use regular access tokens in the opaque format.

Logout

If the application provides the user with the opportunity to initiate a logout from the application (logout), then

it is not enough for the application to complete a local session to ensure a logout. You must also call the logout

operation in Blitz Identity Provider.

If this is not done, then a situation may arise that the user has clicked the button in the application Logout,

after which he/she immediately tried to press the button Login, and instead of the expected identification and

authentication request, a“Single Sign‐On“ was triggered, and the user immediately automatically turned out to

be logged in.

To initiate a logout in Blitz Identity Provider, after closing its local session, the application must direct the user to

Blitz Identity Provider to the URL to perform the logout, passing as parameters:

Note: The logout call is performed in accordance with the OpenID Connect RP‐Initiated Logout 1.0 specifica‐

tion64.

• Optional parameter ‘ “id_token_hint‘ ‐ Blitz Identity Provider checks that the id_token of the parameter

value is released by it. Valid logout return addresses and logout page design are used according to the

configured application with the client_id from the aud field from the id_token.

• Optional parameter ‘ “client_id‘ – valid logout return addresses and logout page design are used in accor‐

dance with the specified client_id.

• Optional parameter ‘ “post_logout_redirect_uri‘ is the address of the return to the application after the

logout. If the parameter is not set, then redirection to the application after logging out is not performed.

If set, it is checked that the value corresponds to at least one allowed return prefix for the application

corresponding to the application passed to id_token_hint (the aud field from id_token) or the
passedclient_id. When passing thepost_logout_redirect_uri parameter, it is also necessary

to pass the id_token_hint or client_id parameter.

• state s a set of random characters in the form of a 128‐bit request identifier. The same value will be

returned in the response when redirecting the user to post_logout_redirect_uri.

Example of a logout request:

64 https://openid.net/specs/openid‐connect‐rpinitiated‐1_0.html

3.2. OIDC application integration 314

https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html

Blitz Identity Provider, version 5.23

https://login.company.com/blitz/oauth/logout?id_token_hint=eyJhbGciOiJSUzI1NiJ9.
→˓eyJub…n0=.Ckt…sQ&post_logout_redirect_uri=https://app.company.com/redirect_uri&
→˓state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f

If Blitz Identity Provider completes the logout successfully, it will redirect the user back to the application using

the passed URL.

Alternative example of a logout request:

https://login.company.com/blitz/oauth/logout?client_id=test-app&post_logout_
→˓redirect_uri=https://app.company.com/redirect_uri&state=342a2c0c-d9ef-4cd6-b328-
→˓b67d9baf6a7f

Valid prefixes of the return pages must be registered in the Blitz Identity Provider settings, otherwise an error will

be returned during the logout.

Applications connected to Blitz Identity Provider via OIDC can subscribe to notify them of the user’s logout from

Blitz Identity Provider. The following features are supported:

• Notification via web browser (Front channel) See OpenID Connect Front‐Channel Logout 1.065.

• Notification via the server (Back channel). See OpenID Connect Back‐Channel Logout 1.066.

For notification via a web browser, the handler “Link to clear the user’s session in the browser (Front channel)”

is registered in the application settings in Blitz Identity Provider. If the handler is registered and the user logged

into the application during the session, then when the user calls the Blitz Identity Provider logout through the

browser on the user’s logout page through the frame <iframe src= "ссылка">, the application handler

specified in the configuration will be called via HTTP GET. If the setting “Add session ID and issuer to the session

cleanup link in the browser (Front channel)” was selected, the following parameters will additionally be passed

in the request:

• iss is the identifier of the identification provider;

• sid is the user’s session ID.

Example of calling a link to clear a user’s session in the browser (Front channel):

https://app.company.com/front_channel_logout?iss=https://login.company.com/blitz&
→˓sid=4ac78c75-b99d-44dc-9304-d2599c829440

In response to the call, the application must terminate the local session and return an HTTP 200 OK‘ response.

Headers should also be included in the response:

Cache-Control: no-cache, no-store
Pragma: no-cache

Note: When implementing an application‐side handler for receiving notifications via a web browser, it is

necessary to take into account the features of modern browsers that counteract the transfer of cookies when

calling handlers in a frame to URL domains other than the URL domain of the parent page:

– in order for the cookie of a third‐party site to be transmitted from the frame, the cookie must have the

SameSite=None flag and theSecure boxes checked, theX-Frame-Options headermust not be trans‐

mitted at the time of setting or overwriting the cookie, and the handler itself must be accessible via HTTPS;

– the handler will not be called in some browsers if the page is opened in Hide ID mode.

For notification via the server, the handler “Link to clear the user’s session in the application (Back channel)” is

registered in Blitz Identity Provider in the application settings. If the handler is registered and the user logged

65 https://openid.net/specs/openid‐connect‐frontchannel‐1_0.html
66 https://openid.net/specs/openid‐connect‐backchannel‐1_0.html

3.2. OIDC application integration 315

https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html

Blitz Identity Provider, version 5.23

into the application during the session, then when the user calls the logout, the Blitz Identity Provider server will

call the application server via HTTP POST to the application handler specified in the configuration. The logout

token logout_tokenwill be passed to the call, which is a JWT token, the body of which contains the following

parameters:

• iss is the identifier of the identification provider;

• aud – identifiers of notified applications;

• iat – the time of the refresh token release;

• jti is the ID of the logout token;

• events – constant value http://schemas.openid.net/event/backchannel-logout ac‐

cording to the OpenID Connect Back‐Channel Logout 1.0 specification;

• sid is the user’s session ID;

• sub is the user ID.

The refresh token contains either sub (if the setting “Add session ID and issuer to the session clear link in the

application (Back channel)” is not enabled) or“sid“ (if the setting “Add session ID and issuer to the session clear

link in the application (Back channel)” is enabled).

Example of calling the user session clear service in the application (Back channel):

POST /back_channel_logout HTTP/1.1
Host: app.company.com
Content-Type: application/x-www-form-urlencoded

logout_token=eyJ…J9.eyJ…J9.RV8…Nw

Example of the disassembled body of the logout token with the “Add session ID and issuer to the session clear

link in the application (Back channel)” setting disabled:

{
"iss": "https://login.company.com/blitz",
"aud": [

"ais"
],
"iat": 1646979918,
"jti": "ee75ccd8-ad30-4175-9a61-3ae06c1a6730",
"events": {

"http://schemas.openid.net/event/backchannel-logout": {}
},
"sub": "3d10f626-ea77-481d-a50bd4a4d432d86b"

}

Example of the disassembled body of the logout token with the “Add session ID and issuer to the session clear

link in the application (Back channel)” setting enabled:

{
"iss": "https://login.company.com/blitz",
"aud": [

"ais"
],
"iat": 1646979918,
"jti": "ee75ccd8-ad30-4175-9a61-3ae06c1a6730",
"events": {

"http://schemas.openid.net/event/backchannel-logout": {}
},
"sid": "4ac78c75-b99d-44dc-9304-d2599c829440"

}

3.2. OIDC application integration 316

Blitz Identity Provider, version 5.23

In response to a call, the application must:

1. Verify the signature of the logout token by analogy with the verification of the identification marker signa‐

ture (page 309).

2. Verify that:

• iss corresponds to the issuer of the deployed system;

• aud includes the ID of the called application;

• the refresh token was released (iat) no earlier than 2 minutes ago;

• sid or sub correspond to the current user sessions.

3. If any checks of the logout token are unsuccessful, then return the code HTTP 400 Bad Request.

4. If all checks are successful, then terminate the user’s local session and return“HTTP 200 OK“ if successful

or HTTP 501 Not Implemented if the session failed.

It is recommended to include headers in the response:

Cache-Control: no-cache, no-store
Pragma: no-cache

3.2.3 Connecting a mobile app

Tip: See the description (page 164) of the interaction between a mobile app and Blitz Identity Provider via OIDC.

Connection settings

To connect a mobile application to Blitz Identity Provider, you will need the data obtained when registering it in

product (page 295):

• identifier assigned to the application in Blitz Identity Provider (software_id);

• initial access token (Initial Access Token);

• application metadata (software_statement);

• return URLs registered for the application during authorization;

• logout return URLs registered for the application;

• the permissions registered for the application (scope).

In order to interact with Blitz Identity Provider, the application must use the following addresses:

• URL for authorization and authentication:

– https://login-test.company.com/blitz/oauth/ae (test environment)

– https://login.company.com/blitz/oauth/ae (production environment)

• URL for getting and updating the access token:

– https://login-test.company.com/blitz/oauth/te (test environment)

– https://login.company.com/blitz/oauth/te (production environment)

• URL for getting user data:

– https://login-test.company.com/blitz/oauth/me (test environment)

– https://login.company.com/blitz/oauth/me (production environment))

• URL for dynamic registration of a mobile application instance:

3.2. OIDC application integration 317

Blitz Identity Provider, version 5.23

– https://login-test.company.com/blitz/oauth/register (test environment)

– https://login.company.com/blitz/oauth/register (production environment)

• URL for getting access token data:

– https://login-test.company.com/blitz/oauth/introspect (test environment)

– https://login.company.com/blitz/oauth/introspect (production environment)

• URL for performing the logout:

– https://login-test.company.com/blitz/oauth/logout (test environment)

– https://login.company.com/blitz/oauth/logout (production environment)

All these URLs, as well as additional information, are located at the address of dynamically updated settings

(metadata) of each Blitz Identity Provider environment:

Tip: See RFC 8414 OAuth 2.0 Authorization Server Metadata67.

• https://login-test.company.com/blitz/.well-known/openid-configuration
(test environment)

• https://login.company.com/blitz/.well-known/openid-configuration (produc‐

tive environment)

Application developers can use a single link to Blitz Identity Provider metadata instead of listing all of the URLs in

their application’s configuration.

Ready‐made libraries

An information resource https://appauth.io/, which provides an SDK for iOS/Android, will be useful for

integrating mobile applications with Blitz Identity Provider.

Dynamic registration of an application instance

Prerequisites for dynamic registration of a mobile application instance:

• the user must install the mobile application;

• the mobile application must have the following data:

– mobile application ID (software_id);

– initial access token (Initial Access Token);

– metadata of the mobile application (software_statement).

Themobile applicationmust send anHTTP request using the POSTmethod to Blitz Identity Provider to the address

of the dynamic registration service /blitz/oauth/register.

Parameters must be passed:

• mobile application ID (software_id);

• metadata of the mobile application (software_statement);

• the type of device onwhich themobile application is running (device_type) is one of the possible values
shown in the table:

67 https://tools.ietf.org/html/rfc8414

3.2. OIDC application integration 318

https://tools.ietf.org/html/rfc8414

Blitz Identity Provider, version 5.23

Tokens used in Blitz Identity Provider

Device type (device_type) Description

iphone Smartphones of the iPhone family

ipad Tablets of the iPad family

android_phone Smartphones running Android OS

android_tab Tablets running Android OS

win_mobile Devices running Windows 10 Mobile

The dynamic registration request must contain the Authorization header with the primary access token

(type – Bearer) issued to the application.

Request example:

POST /blitz/oauth/register HTTP/1.1
Content-Type: application/json
Authorization: Bearer NINxnizbgYYQg94vEd6MjkTPxR3r2s9IAHBO92AszgTIqItY

{
"software_id": "CSI",
"device_type": "iphone",
"software_statement": "eyJ0e…xQ"

}

Upon successful completionof the request, Blitz Identity Provider returns to the instance of themobile application

a list of statements, among which the following are necessary for further work (they must be stored in a secure

manner on the user’s device):

• ID of the mobile application instance (client_id);

• the secret of the mobile application instance (client_secret);

• configuration management token (registration_access_token);

• configuration management URL (registration_client_uri).

Response example:

{
"grant_types": [

"authorization_code"
],
"registration_client_uri": "https://login.company.com/blitz/oauth/register/dyn~

→˓CSI~4e6904c5-ef29-4ae5-8d30-99c359b8270f",
"scope": "openid profile",
"registration_access_token": "eyJ0e…tw",
"client_id": "dyn~CSI~4e6904c5-ef29-4ae5-8d30-99c359b8270f",
"software_id": "CSI",
"software_version": "1",
"token_endpoint_auth_method": "client_secret_basic",
"response_types": [

"code"
],
"redirect_uris": [

"com.example.app:/oauth2redirect/example-provider"
],
"client_secret": "3r0tt2OlyeGecWq",
"client_secret_expires_at": 0

}

3.2. OIDC application integration 319

Blitz Identity Provider, version 5.23

User’s initial login

After receiving (page 318) the client_id / client_secret pair, the mobile application instance must iden‐

tify and authenticate the user according to the OIDC/OAuth 2.0 specifications and taking into account the addi‐

tional specification RFC 7636 Proof Key for Code Exchange by OAuth Public Clients68 (mobile application when

interacting with Blitz Identity Provider should use PKCE).

The identification and authentication scenario includes the following steps:

• request for an authorization code;

• getting an access token;

• getting user data in exchange for an access token.

The user’s initial login to the mobile application must occur within 1 hour after the completion of dynamic reg‐

istration in the Blitz Identity Provider instance of the mobile application. Otherwise, the client_id will be

canceled and a new dynamic registration will be required.

Getting the authorization code

To authenticate, an instance of the mobile application must call the regular browser of the mobile platform and

redirect the user to the URL Blitz Identity Provider of the authorization and authentication service (/blitz/
oauth/ae).

When using the browser with a mobile application, the following features should be taken into account:

• for iOS, you must use the built‐in browser: the SFSafariViewController class or the SFAuthen-
ticationSession class (in-app browser tab pattern);

• for Android, you need to use the built‐in browser: the Android Custom Tab function (implements the

in-app browser tab patter).

Attention: The use of an Embedded browser is not allowed.

The request parameters should be specified:

• client_id is the ID of the mobile application instance;

• response_type is a response type (takes the value code);

• scope is the requested permissions, theopenid permissionmust be passed and the necessary additional

scope to receive user data (these scopemust be provided with metadata);

• redirect_uri is a link to return the user to the application, the link must match one of the values

specified in the metadata. In order for Blitz Identity Provider to be able to call the mobile application back

after authorization, the following schemes should be used:

– for iOS:

Tip: For an example of implementation, see: https://github.com/openid/AppAuth‐iOS

* option 1 is to use the private‐use URI scheme (custom URL scheme). Type of return

links: com.example.app:/oauth2redirect/example-provider (CFBundleURL‐

Types keys are registered in Info.plist);

* option 2 is to use a URI like“https“ (Universal links). Type of return links: https:/
/app.example.com/oauth2redirect/example-provider (the “Universal links”

function is used, URLs are registered in the entitlement file in the application and as‐

sociated with the application domain). This method is preferable for iOS 9 and above.

68 https://tools.ietf.org/html/rfc7636

3.2. OIDC application integration 320

https://tools.ietf.org/html/rfc7636
https://github.com/openid/AppAuth-iOS

Blitz Identity Provider, version 5.23

– for Android:

Tip: For an example of implementation, see: https://github.com/openid/AppAuth‐Android

* option 1 is to use the private‐use URI scheme (custom URL scheme`). Type of
return links: ``com.example.app:/oauth2redirect/example-provider
(link support using Android Implicit Intents, links are registered in the manifest);

* option 2 is to use a URI like https (Universal links). Type of return links: https:/
/app.example.com/oauth2redirect/example-provider (available starting from

Android 6.0, links are registered in the manifest). This method is preferable for Android 6.0 and

higher.

• state is a set of random characters in the form of a 128‐bit request identifier (used to protect against

interception), the same value will be returned in the response – an optional parameter;

• access_type (optional parameter) – whether the application needs to receive refresh_token, which is

necessary to obtain information about the user in the future when the user is offline. Takes the value

“online”/“offline”, refresh_token is provided when access_type=offline. If the value is not set, then the

behavior is determined by the setting set for the specified application in Blitz Identity Provider;

• code_challenge_method is the method for encrypting the request ID, “S256” should be specified;

• code_challenge is the encrypted identifier of the request. The request ID (code_verifier) must

be stored by the mobile application instance for subsequent transmission to the access token request. The

encrypted value is calculated as follows:

code_challenge=BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

Example of a request to receive an authorization code (authentication and access token with openid and pro-
file permissions were requested, PKCE is used):

https://login.company.com/blitz/oauth/ae?scope=openid+profile
&access_type=online&response_type=code
&state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f
&client_id=dyn~CSI~4e6904c5-ef29-4ae5-8d30-99c359b8270f
&code_challenge_method=S256&code_challenge=qjrzSW9gMiUgpUvqgEPE4
&redirect_uri=https%3A%2F%2Fapp.example.com%2Foauth2redirect%2Fexample-provider

An example of a response with the value of the authorization code (code) and the state parameter:

https://app.example.com/oauth2redirect/example-provider?
→˓code=f954nEzQ08DXju4wxGbSSfCX7TkZ1GvXUR7TzVus8fGnu4AUl-YIosgax-
→˓BLXMeQQAlasD6CN2qG_0KXK5NIjARoKykhuR9IpbuzqeFxS0&state=342a2c0c-d9ef-4cd6-b328-
→˓b67d9baf6a7f

Possible errors when calling /oauth/ae comply with RFC 6749 and are described here69.

69 https://tools.ietf.org/html/rfc6749#section‐4.1.2.1

3.2. OIDC application integration 321

https://github.com/openid/AppAuth-Android
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

Blitz Identity Provider, version 5.23

Getting tokens by an application instance

After receiving the authorization code, the mobile application instance must exchange it for tokens. To do this,

the instance must form a POST request to the URL to receive the token. The request must contain the header

Authorizationwith the value Basic {secret}, where secret is“client_id:client_secret“ (for example,

dyn~CSI~4e69…Wq) in Base64 format.

Example of a header:

Authorization: Basic ZHluOkNTSTo…dx

The request body must contain the following parameters:

• code is the value of the authorization code that was previously received by an instance of the mobile

application from Blitz Identity Provider;

• grant_type is the value authorization_code;

• redirect_uri – must be the same value that was specified in the request to receive the authorization

code;

• code_verifier is the request ID generated by the mobile application instance when requesting an

authorization code.

Request example:

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic ZHluOkNTSTo…dx
Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code&code=FLZHS…GU
&redirect_uri=https%3A%2F%2Fapp.example.com%2Foauth2redirect%2Fexample-provider
&code_verifier=M25iVXpKU3puUjFaYWg3T1NDTDQtcW1ROUY5YXlwalNoc0hhakxifmZHag

An access token and an identification token are returned in response.

Example of a response with successful execution of the request:

{
"id_token": "eyJhb…J9. eyJub…0=.Ckt_dr…sQ",
"access_token": "dO-xym…BE",
"expires_in": 3600,
"scope": "openid profile",
"token_type": "Bearer"

}

After receiving the access token, the instance of themobile application becomes associatedwith the user account.

It is recommended that the mobile application prompts the user to set a PIN code or enable Touch ID/Face ID.

Besides, using the received access token, the application can request user data (page 333).

If the authorization code has already been used, the redirect_uri did not match the one previously used in

the call to /oauth/ae, or the code expired, or the code_verifier passed does not match code_chal-
lenge, an error will be returned as a response.

Example of an error response:

{
"error": "invalid_grant",
"error_description": "The provided authorization grant… is invalid, expired,␣

→˓revoked…"
}

Possible errors when calling /oauth/tematch RFC 6749 and are described here70.

70 https://tools.ietf.org/html/rfc6749#section‐5.2

3.2. OIDC application integration 322

https://tools.ietf.org/html/rfc6749#section-5.2

Blitz Identity Provider, version 5.23

User re‐login

Each time a user logs into an instance of a mobile application, if Internet access is available from the device, the

user should be authenticated by calling the Blitz Identity Provider service. In particular, each time you log into

an instance of a mobile application, you need to check the user’s PIN code or Touch ID/Face ID, then extract the

client_id / client_secret securely stored on the device and make a request to Blitz Identity Provider to

re‐log the user. Use the access token received in response from Blitz Identity Provider to get up‐to‐date user data.

The request to Blitz Identity Provider to re‐log in must be made by the POST method to the URL to receive the

token (/oauth/te). The request must contain the header Authorization‘ with the value Basic {secret},
where secret is the client_id:client_secret of the mobile application instance in Base64 format.

The request body must contain parameters:

• grant_type is the value client_credentials;

• scope is a list of permissions requested by the instance of the mobile application.

Request example:

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9ydGFsLmlhc2l1LmxvY2FsOnBvcnRhbC5pYXNpdS5sb2NhbA==
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials&scope=profile

The response returns an access token and information about this token.

Example of a response with successful execution of the request:

{
"access_token": "dO-xym…BE",
"expires_in": 3600,
"scope": "openid profile",
"token_type": "Bearer"

}

Using the received access token, an instance of the mobile application can request (page 333) up‐to‐date user

data from Blitz Identity Provider in order to visualize or update this data in the device if necessary.

If a user in Blitz Identity Provider revoked the authorization right in Blitz Identity Provider from an instance of a

mobile application, themobile application instancewill receive an error as a result of calling Blitz Identity Provider.

Example of an error response:

{
"error": "invalid_client",
"error_description": "Client authentication failed…"

}

Possible errors when calling /oauth/tematch RFC 6749 and are described here71.

71 https://tools.ietf.org/html/rfc6749#section‐5.2

3.2. OIDC application integration 323

https://tools.ietf.org/html/rfc6749#section-5.2

Blitz Identity Provider, version 5.23

User switching or logging out

If the mobile application has a user exit or change function, then when the user calls such a function, the mobile

applicationmust also call Blitz Identity Provider anddelete theclient_id /client_secretpair released for
this instance of the mobile application. If this is not done, then when the user logs out of the mobile application,

the user in the web application Blitz Identity Provider Security Settings will still see that the mobile application is

still linked to his account.

Note: The standard address looks like this: https://login.company.com/blitz/profile.

To delete the client_id/ client_secret pair released for an instance of a mobile application from Blitz

Identity Provider, themobile applicationmust send to Blitz Identity Provider a DELETE request to the configuration

management URL (registration_client_uri) received and stored by themobile applicationwhen calling

the dynamic registration (page 318) in Blitz Identity Provider instance of themobile application. The requestmust

contain the header Authorizationwith the value Bearer {registration_access_token}, where
registration_access_token is a configuration management token, also received and stored during the

dynamic registration process. The request does not require specifying parameters.

Request example:

DELETE /blitz/oauth/register/dyn~CSI~4e6904c5-ef29-4ae5-8d30-99c359b8270f HTTP/1.1
Authorization: Bearer eyJ0e…tw

If, after deleting the client_id / client_secret pair, the mobile application immediately requests a new

client_id / client_secret pair and requests user login, then if the previous login was performed in the

same browser session, then SSO will work and the user will automatically log in with the previous account. This

is usually an undesirable behavior to log in immediately after logging out, since it is expected that the user will

want to log in with a different account. Therefore, after logging out, it is recommended to request a new login

using one of the following methods:

• When requesting an authorization code, specify the additional parameter prompt=login in the request.
Then Blitz Identity Provider will prompt the current user to authenticate, even if the Blitz Identity Provider

session is active. The user can also select Change account on the login page to log in with a different

account.

• When requesting an authorization code, specify the additional parameter prompt=select_account
in the request. So Blitz Identity Provider will immediately prompt the user to select an account from among

the remembered ones or log in with a new account. The user does not have to additionally press the button

Change account on the login page.

Opening web resources from the application

In some mobile applications, developers may need to provide a function for opening web resources that also

require user identification/authentication and use Blitz Identity Provider (end‐to‐end authentication mode) for

this purpose.

When accessing a web resource, a user logged into amobile applicationmay encounter a situation that Blitz Iden‐

tity Provider will repeatedly require him to complete identification/authentication in a web resource as a result of

a request by the corresponding web application for user identification/authentication in Blitz Identity Provider. To

prevent this from happening, themobile application can immediately request Blitz Identity Provider to receive an

access token (access_token) for a special permission (scope) with the name native immediately before

calling the web resource.

You can get an access token using the method described in User re‐login (page 323) or Getting tokens (page 304)

(if the application has a refresh_token).

Request example:

3.2. OIDC application integration 324

Blitz Identity Provider, version 5.23

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9ydGFsLmlhc2l1LmxvY2FsOnBvcnRhbC5pYXNpdS5sb2NhbA==
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials&scope=native

In response, not only the access token and information about this token are returned, but also a special attribute

– the end‐to‐end login marker css (cookie short session).

Example of a response with the css attribute:

{
"access_token": "dO-xym…BE",
"css": "nUngQ…LA",

"expires_in": 3600,
"scope": "native",
"token_type": "Bearer"

}

After that, the mobile application can open a web resource. At the same time, in the launched web browser, the

mobile application must first set a cookie with the following parameters:

• cookie name – css;

• cookie domain – login.company.com;

• cookie path – /blitz;

• flags HTTPOnly=true and Secure=true;

• the cookie value is the value received in the css parameter when receiving an access token from Blitz

Identity Provider on the scope named native.

If the launched web resource initiates identification (authentication) in Blitz Identity Provider within 300 seconds

from the moment of launch, and the cookie was correctly set, then Blitz Identity Provider, at the request of the

web application, will automatically perform end‐to‐end identification and authentication of the user under the

account with which the user previously logged into the instance of the mobile application that invoked the web

resource.

Login to the application using a QR code

QR code login can be used in Blitz Identity Provider as the first authentication factor (an alternative to entering

a username/password). When choosing this login method, Blitz Identity Provider generates and displays to the

user a QR code in which the login request is encoded (Figure 6). The validity period of the QR code is limited,

and the generated request is a one‐time request. Upon expiration of the displayed QR code, the user is given the

opportunity to request the display of a new QR code.

The link encoded in theQR code looks like: QR_URL?code=b0671081-cb73-4839-8bc1-8cf020457228,
for example:

https://login.company.com/blitz/login/qr?code=b0671081-cb73-4839-8bc1-8cf020457228

The QR_URL value can be configured so that if a smartphone is pointed at a QR code using a standard camera ap‐

plication, the user can see a web page with instructions on how to get the correct mobile application to download

QR codes or the ability to call a suitable mobile application via Universal Link.

3.2. OIDC application integration 325

Blitz Identity Provider, version 5.23

The QR code login process on the mobile application side consists of the following steps:

1. Before photographing the QR code with a mobile application, the user must be logged into the mobile

application using Blitz Identity Provider, and the mobile application must receive a valid access token from

scope named blitz_qr_auth (permission to log in using a QR code) in Blitz Identity Provider.

2. When photographing a QR code, the mobile application should discard the QR_URL value (the application

does not need it and should be ignored) and the application should read the value of the code parameter

passed in the link.

3. After reading the QR code, the mobile application should call the Blitz Identity Provider service to receive

information about the login request, passing the value of the received code to the service, as well as the

header with the access token and the header of the user’s current language.

Example of a call:

curl --location --request GET 'https://login.company.com/blitz/api/v3/auth/qr/
→˓b0671081-cb73-4839-8bc1-8cf020457228' \
--header 'Accept-Language: ru' \
--header 'Authorization: Bearer eyJhb…tA'

The response will return a JSON containing information about the IP address, operating system and browser of

the device on which the user is trying to log in using a QR code, as well as the name of the application that the

user is trying to log in to.

Example of a successful response:

{
"ip": "83.220.238.103",
"rp_name": "User profile",
"ip_city": "Москва",
"browser": "Chrome 109",
"ip_state": "Москва",
"os": "macOS 10.15.7",
"ip_lng": "37.6171",

(continues on next page)

3.2. OIDC application integration 326

Blitz Identity Provider, version 5.23

(continued from previous page)

"device_type": "pc",
"ip_lat": "55.7483",
"ip_country": "Россия",
"rp_id": "_blitz_profile",
"device_name": "macOS Big Sur (11)",
"ip_radius": "20",
"device": "PC"

}

Besides, the user will be shown a screen in the web page that a login confirmation is expected.

The user in the mobile application needs to display the application name (rp_name), IP address (ip), geodata
(ip_country, ip_state, ip_city ‐ a text description of the address or show on themap at the coordinates

ip_lat, ip_lng), the device used (device_name), browser (browser).

Possible values of device_type now: kindle, mobile, tablet, iphone, windowsPhone,
pc, ipad, playStation, unknown. You can use them to visualize a message, or you can simply out‐

put the device name as a text string from device.

Example of a response with an invalid access token:

{
"type": "security_error",
"error": "bad_access_token",
"desc": "expired_access_token"

}

Example of a response with an expired QR code:

{
"type": "process_error",
"error": "qr_session_expired",
"desc": "Error while getting QR authentication session"

}

Example of a response with an invalid code:

{
"params": {},
"desc": "Error while getting QR authentication session",
"error": "qr_session_not_found"

}

3.2. OIDC application integration 327

Blitz Identity Provider, version 5.23

An example of a response when calling from an already used QR session (when the login has already been con‐

firmed or rejected):

{
"type": "process_error",
"error": "qr_session_already_completed",
"desc": "Error while getting QR authentication session"

}

1. The mobile application should display the login information received from Blitz Identity Provider JSON to

the user, as well as the choice of action: “Allow” or “Reject”. In the case of “Reject”, request the reason for

the rejection (“Login caused by error” or “I did not request login”).

2. Depending on the user’s decision, the mobile application should call the Blitz Identity Provider service to

confirm or deny login. An access token with scope named blitz_qr_authmust be used during the call.

Example of a call when confirming login:

curl --location --request POST 'https://login.company.com/blitz/api/v3/auth/qr/
→˓5e20b01e-5c7c-4101-8292-98e6865c7bfb/confirm' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer eyJhb…cQ'

If successful, HTTP 204 No Content without body will be returned. The user will also log into the applica‐

tion.

If the code is expired, it will be returned:

{
"type": "process_error",
"error": "qr_session_expired",
"desc": "Error while confirming QR authentication session"

}

If the code does not exist, it will return:

{
"params": {},
"desc": "Error while confirming QR authentication session",
"error": "qr_session_not_found"

}

Example of a response with an invalid access token:

{
"type": "security_error",
"error": "bad_access_token",
"desc": "expired_access_token"

}

An example of a response when calling from an already used QR session (when the login has already been con‐

firmed or rejected):

{
"type": "process_error",
"error": "qr_session_already_completed",
"desc": "Error while getting QR authentication session"

}

An example of a call when login is rejected:

3.2. OIDC application integration 328

Blitz Identity Provider, version 5.23

curl --location --request POST 'https://login.company.com/blitz/api/v3/auth/qr/
→˓845f2334-fa6b-40c0-9a71-f57997166e39/refuse' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer eyJhb…bQ' \
--data-raw '{
"cause_id": "mistake",
"desc": "Вход вызван по ошибке"
}'

If login is rejected, you need to pass JSON with the cause_id attribute in the request body. It is recommended

that if the user rejects the login, ask the reason. If the user reports that he “changed his mind” (or “caused the

login by mistake‘), then fill in cause_id=mistake. But if the user reports that he did not initiate the login,

then fill in cause_id=unauthorized. The desc parameter is optional – you can specify any text string.

If the call is successful, HTTP 204 No Content without body will be returned. The user will also be shown

an error screen:

If the code is expired, an error will be returned:

{
"type": "process_error",
"error": "qr_session_expired",
"desc": "Error while refusing QR authentication session"

}

If the code does not exist, it will return:

{
"params": {},
"desc": "Error while refusing QR authentication session",
"error": "qr_session_not_found"

}

Example of a response with an invalid access token:

{
"type": "security_error",
"error": "bad_access_token",
"desc": "expired_access_token"

}

An example of a response when calling from an already used QR session (when the login has already been con‐

firmed or rejected):

3.2. OIDC application integration 329

Blitz Identity Provider, version 5.23

{
"type": "process_error",
"error": "qr_session_already_completed",
"desc": "Error while getting QR authentication session"

}

3.2.4 Connecting Smart Device (IoT) applications

General information

Blitz Identity Provider supports the ability to authorize smart device applications (voice assistant applications,

Smart TV, chatbots) using a user account on another device. For such authorization, the RFC 8628 OAuth 2.0

Device Authorization Grant72. is used.

Connection settings

In order to interact with Blitz Identity Provider, the application must use the following addresses:

• URL for receiving the authorization confirmation code (OAuth 2.0 Device Authorization Grant):

– https://login-test.company.com/blitz/oauth/da (test environment)

– https://login.company.com/blitz/oauth/da (production environment)

• URL for getting and updating the access token:

– https://login-test.company.com/blitz/oauth/te (test environment)

– https://login.company.com/blitz/oauth/te (production environment)

• URL for getting user data:

– https://login-test.company.com/blitz/oauth/me (test environment)

– https://login.company.com/blitz/oauth/me (production environment))

• URL for getting access token data:

– https://login-test.company.com/blitz/oauth/introspect (test environment)

– https://login.company.com/blitz/oauth/introspect (production environment)

• URL for performing the logout:

– https://login-test.company.com/blitz/oauth/logout (test environment)

– https://login.company.com/blitz/oauth/logout (production environment)

All these URLs, as well as additional information, are located at the address of dynamically updated settings

(metadata) of each Blitz Identity Provider environment:

Tip: See RFC 8414 OAuth 2.0 Authorization Server Metadata73.

• https://login-test.company.com/blitz/.well-known/openid-configuration
(test environment)

• https://login.company.com/blitz/.well-known/openid-configuration (produc‐

tion environment)

Application developers can use a single link to Blitz Identity Provider metadata instead of listing all of the URLs in

their application’s configuration.

72 https://www.ietf.org/rfc/rfc8628.html
73 https://tools.ietf.org/html/rfc8414

3.2. OIDC application integration 330

https://www.ietf.org/rfc/rfc8628.html
https://www.ietf.org/rfc/rfc8628.html
https://tools.ietf.org/html/rfc8414

Blitz Identity Provider, version 5.23

Getting the authorization code

To initiate authorization, the smart device application must make a request to Blitz Identity Provider for the ser‐

vice to receive the authorization confirmation code (/oauth/da). The request must be made using the POST

method. The request must contain the header Authorization with the value Basic {secret}, where
secret is client_id:client_secret (for example, app:topsecret) in Base64 format.

Example of a header:

Authorization: Basic ZHluOkNTSTo…dx

The request body must contain the following parameters:

• client_id is the application ID;

• scope is requested permissions.

Request example:

POST /blitz/oauth/da HTTP/1.1
Authorization: Basic ZHluOkNTSTo…dx
Content-Type: application/x-www-form-urlencoded

client_id=test-app&scope=profile

In response, Blitz Identity Provider will return the data required to confirm login on another device:

• device_code is a device code;

• user_code is the authorization request confirmation code displayed to the user;

• verification_uri is a link to a page where the user can enter a confirmation code for the authoriza‐

tion request;

• verification_uri_complete is a link to a page where the authorization request confirmation code

has already been substituted as a parameter;

• expires_in is the lifetime of the user code in seconds;

• interval is the recommended waiting period in seconds when the application asks the user to enter the

authorization request confirmation code.

Example of a response with successful execution of the request:

{
"device_code": "7Lz30lK57bWaKHBYxM8kW7KpOFvDg_4ujz3LpQxcleE",
"user_code": "934-367-578",
"verification_uri": "https://device.company.com",
"verification_uri_complete": "https://device.company.com?uc=934-367-578",
"expires_in": 300,
"interval": 5

}

Upon receiving a response, the smart device application should instruct the user to click on the verifica-
tion_uri link and enter the code from user_code.

Note: The link in verification_uri is displayed according to the settings set in Blitz Identity Provider.

It is recommended to configure this link to be short and easy for users to enter, as well as well perceived by

ear or beautifully displayed on the Smart TV screen. From this link, redirection should be configured to the

handler for user input of the confirmation code located on the page https://login.company.com/
blitz/oauth/device?ci=client_id, where instead of client_id you need to set the ID of the

application registered in Blitz Identity Provider, from the settings of which the allowed login methods and

settings for the appearance of the login page will be taken.

3.2. OIDC application integration 331

Blitz Identity Provider, version 5.23

Depending on the type of smart device, you need to choose the most user‐friendly method. For example:

• When logging in to a Smart TV, the application can draw the user a QR code in which encode the link from

verification_uri_complete. Then the user will need to point the phone’s camera at the QR code

and log in on the phone.

• When logging in to the chatbot, the application can draw the user a button that opens a link from

verification_uri_complete. in the browser.‘ Then the user will need to log in to their device’s

browser.

• When logging in to the voice assistant application, the application can instruct the user which site he should

go to and voice the code that the user must enter, or the application can send the user an SMS message or

an e‐mail with instructions.

Getting a security token

After providing instructions to the user, the smart device application should start polling Blitz Identity Provider

with an interval from the interval parameter to obtain security tokens. To do this, the application must

access Blitz Identity Provider using the POST method at the URL to receive a token (/oauth/te). The re‐

quest must contain the header Authorization with the value Basic {secret}, where secret is the

client_id:client_secret of the mobile application instance in Base64 format.

The request body must contain parameters:

• grant_type is the value urn:ietf:params:oauth:grant-type:device_code;

• device_code is the previously received device code.

Request example:

POST /blitz/oauth/te HTTP/1.1
Authorization: Basic cG9…A==
Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:device_code&device_code=Yrn…_0

If the user has not yet confirmed authorization, Blitz Identity Provider will return the following response with an

error:

{
"error": "authorization_pending",
"error_description": "The authorization request is still pending"

}

If the user code has expired or the code is incorrect, Blitz Identity Providerwill return the following error response:

{
"error": "invalid_grant",
"error_description": "The provided authorization grant (e.g., authorization␣

→˓code, resource owner credentials) or refresh token is invalid, expired, revoked,␣
→˓does not match the redirection URI used in the authorization request, or was␣
→˓issued to another client."
}

If the user has confirmed authorization, Blitz Identity Provider will return the access token and information about

it to the application, as well as the update token.

Example of a response with successful execution of the request:

{
"access_token": "eyJ…tA",

(continues on next page)

3.2. OIDC application integration 332

Blitz Identity Provider, version 5.23

(continued from previous page)

"refresh_token": "wVE…cw",
"scope": "profile",
"token_type": "Bearer",
"expires_in": 3600

}

Using the received access token, the smart device application can запросить (page 333) up‐to‐date user data

from Blitz Identity Provider.

3.2.5 Getting user attributes

To request user data, youmustmake a request using the GETmethod at the URL of receiving user data (/oauth/
me). The following header should be added to the request:

Authorization: Bearer <access token>

In the header, <access token> is the access token received from Blitz Identity Provider (see Getting tokens

(page 304) and Getting tokens by an application instance (page 322)).

Request example:

GET /blitz/oauth/me HTTP/1.1
Authorization: Bearer NINxn…tY
Cache-Control: no-cache

The response will display only the data that are defined in the scope (page 298) to which the access token was

received.

Response example:

{
"family_name": "Иванов",
"given_name": "Иван",
"middle_name": "Иванович",
"email": "iivanov@company.com",
"phone_number": "79162628910",
"sub": "3d10f626-ea77-481d-a50bd4a4d432d86b"

}

A user account can be included in user groups. To get a list of groups that a user is included in, an access token

must be obtained from scope named usr_grps.

An example of a response for a user included in access groups:

{
"family_name": "Иванов",
"given_name": "Иван",
"middle_name": "Иванович",
"email": "iivanov@company.com",
"phone_number": "79162628910",
"sub": "3d10f626-ea77-481d-a50bd4a4d432d86b",
"groups": [

{
"id": "564486ff-af0a-3fb1-3f09-e7c5f7f9833e",
"name": "Тестовая организация",
"OGRN": "1234567890123",
"INN": "9876543210"

}

(continues on next page)

3.2. OIDC application integration 333

Blitz Identity Provider, version 5.23

(continued from previous page)

]
}

3.2.6 Ensuring connection security

The operator of the application connected to Blitz Identity Provider must ensure compliance with the following

security requirements:

1. The confidentiality of the client_secret value received for the application during registration in Blitz

Identity Provider must be ensured:

• It is forbidden to betray the value of client_secret to persons who are not related to the oper‐

ation of the application.

• It is forbidden to use client_secret in the client part of the software (code executed on the side

of the browser, mobile application, desktop application). client_secret should be used only

in the server components of the application. The exception is the client_secret received by a

mobile or desktop application using a dynamic registration operation, such a client_secret can

be stored and processed in a mobile or desktop application.

• If the client_secret is compromised, then an application must be submitted to replace

the client_secret application. Blitz Identity Provider allows for “smooth replacement” of

client_secret , namely, an additional client_secret can be assigned to the application for

the timewhile the application is being reconfigured from the old to the new valueclient_secret.

2. The confidentiality of access tokens (access_token) and refresh tokens (refresh_token) received
by the application from Blitz Identity Provider must be ensured.

• You should avoid using access tokens in the browser part of the application. If it is still necessary (SPA

application), then the JS code using the access token should provide protection against the possibility

of obtaining the value of the access token from the browser console.

• It is forbidden to store/process the update token on the side of the browser part of the application

– the update token must be used exclusively in the server components of the application. When

storing update tokens in an application (in databases, files, etc.), access to stored update tokens must

be limited.

3. The application’s interaction with Blitz Identity Provider in the production loop should be carried out ex‐

clusively using a secure connection (HTTPS). It is forbidden to use HTTP in application handlers (return

addresses redirect_uri, post_logout_redirect_uri).

4. The application is not allowed to open the Blitz Identity Provider login page in the frame.

5. When connecting mobile applications to Blitz Identity Provider:

• using PKCE is mandatory;

• it is forbidden to use an Embedded browser.

3.3 SAML application integration

3.3.1 How to register the application correctly

Authentication in SAML terminology is the result of the interaction of three parties:

• the identity provider (Identity Provider), which is Blitz Identity Provider;

• the service provider (Service Provider), which is the connected application;

• the user’s web browser (User Agent).

3.3. SAML application integration 334

Blitz Identity Provider, version 5.23

The first step when connecting an application is to register (page 171) it as a service provider in Blitz Identity

Provider. You must first prepare an XML file with the metadata of the service provider or the parameter values

necessary for self‐preparation of metadata.

Themetadata of the service provider describes the settings for connecting the application to Blitz Identity Provider

(for example, the URL of the application endpoints, keys for checking the item instance). The XML language is

used to describe metadata.

Tip: See more about SAML metadata74.

Attention: Metadata should be prepared based on the results of the work performed for adding the protocol

support (page 336).

If the application is a ready‐made software that supports SAML, then the metadata must be obtained according

to the documentation for this software. Usually, such software provides a URL where metadata can be obtained.

If the software of the connected application does not provide for downloading metadata, but the software doc‐

umentation describes the parameters that must be configured to connect the application, then you can specify

these parameters so that the metadata based on them is independently prepared by the Blitz Identity Provider

Administrator.

In this case, you must specify the following parameters:

1. Service Provider ID (entityID) – should be specified only if the application needs a specific entityID.
Otherwise, the entityID will be independently assigned by the Blitz Identity Provider Administrator.

2. Application (service provider) public key certificate – should be specified only if the application signs the

SAML request when sending to Blitz Identity Provider.

Note: The service provider certificate is different from the TLS certificate of the connected website.

This is usually a self‐signed certificate with a long validity period.

Important: RSA‐2048 keys must be used.

Note: It is acceptable to use self‐signed certificates with a long validity period.

3. URL for receiving a response from Blitz Identity Provider SAML ‐ the applicationmust provide a handler that

receives SAML‐responses from Blitz Identity Provider with login results. This application setup is usually

called Assertion Consumer Service.

4. The URL for receiving a logout request from Blitz Identity Provider is a selective setting. If the application

supports a single logout, then it can provide a single logout handler. This application setting is usually called

Single Logout Service Location.

5. The URL for redirecting the user to the application after a successful logout is an optional setting. If the

application supports a single logout and can initiate a single logout, then it can provide a URL to return the

user after the logout. This application setting is usually called Single Logout Service Response
Location.

6. The list of requested attributes (SAML Assertion).

74 https://docs.oasis‐open.org/security/saml/v2.0/saml‐metadata‐2.0‐os.pdf

3.3. SAML application integration 335

https://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

Blitz Identity Provider, version 5.23

Available user attributes

Attribute Description

logonname Username of the user in the domain

surname Last name

firstname Name

middlename Patronymic

email Business email address

7. Indicates whether attributes must be transmitted in encrypted form.

Note: Attributes in a SAML message are always passed signed. It is advisable to enable attribute

encryption if the user should not be able to read the attribute value.

3.3.2 Connecting the application via SAML

Connection data

To connect an application to Blitz Identity Provider, you will need the data obtained during its registration

(page 334):

• the identifier assigned to the application in Blitz Identity Provider (entityID);

• the metadata file of the service provider.

The application interacts with Blitz Identity Provider services using the following addresses:

• Blitz Identity Provider metadata:

– https://login-test.company.com/blitz/saml/profile/Metadata/SAML (test

environment)

– https://login.company.com/blitz/saml/profile/Metadata/SAML (production

environment)

• URL for authentication:

– https://login-test.company.com/blitz/saml/profile/SAML2/Redirect/
SSO (test environment)

– https://login.company.com/blitz/saml/profile/SAML2/Redirect/SSO (pro‐

duction environment)

• URL for the logout:

– https://login-test.company.com/blitz/saml/profile/SAML2/Redirect/
SLO (test environment)

– https://login.company.com/blitz/saml/profile/SAML2/Redirect/SLO (pro‐

duction environment)

• Publisher’s URL:

– https://login-test.company.com/blitz/saml/ (test environment)

– https://login.company.com/blitz/saml/ (production environment)

If the application supports the SAML connection protocol, then the specified data should be sufficient to configure

the application. If the application does not support the SAML protocol, it should be modified according to the

recommendations set out in the sections: Ready‐made libraries (page 338) and Principle of integration (page 339).

Typical questions about how to set up an application to connect to Blitz Identity Provider over the SAML protocol:

3.3. SAML application integration 336

Blitz Identity Provider, version 5.23

Where can I find the metadata of the identity provider?

To download the metadata, follow the link https://login.company.com/blitz/saml/profile/
Metadata/SAML and copy the open XML document into the application.

Where can I find the SAML certificate of the identity provider?

Open the XML document with the metadata of the identity provider. Find the section

<ds:X509Certificate></ds:X509Certificate> – this is where the SAML certificate of the

identification provider is located. Example:

Sometimes, in order to load correctly into the application, you need to insert the line-----BEGIN CERTIFI-
CATE----- before the line with the certificate, and after – -----END CERTIFICATE-----

3.3. SAML application integration 337

Blitz Identity Provider, version 5.23

Where can I find the addresses of the SAML handlers of the identity provider?

The application should send identification/authentication requests to the following handlers

(SingleSignOnService) in the PROD‐environment:

• https://login.company.com/blitz/saml/profile/SAML2/Redirect/SSO – a stan‐

dard SAML handler is used to receive requests compressed using the Deflate algorithm.

• https://login.compan y.com/blitz/saml/profile/SAML2/Redirect/Plain/SSO –

for receiving uncompressed requests – should be used only if the connected application does not use de-
flate.

The application should send requests for a single logout to the following handlers (SingleLogoutService)
in the PROD‐environment:

• https://login.company.com/blitz/saml/profile/SAML2/Redirect/SLO – a stan‐

dard SAML handler is used to receive requests compressed using the Deflate algorithm.

• https://login.compan y.com/blitz/saml/profile/SAML2/Redirect/Plain/SLO –

for receiving uncompressed requests – should be used only if the connected application does not use de-
flate.

In the TEST environment, similar addresses start with https://login-test.company.com.

What is the entity ID of the identity provider?

Blitz Identity Provider as an identification provider, it has the following entityID:

• For the PROD‐environment – https://login.company.com/blitz/saml

• For the TEST‐environment – https://login-test.company.com/blitz/saml

Ready‐made libraries

Since self‐development of the SAML client software interface is a time‐consuming task, and implementation errors

are fraught with security threats, it is recommended to use existing popular SAML client libraries when integrating

an application using SAML:

• OIOSAML75 (Java, .NET),

• OpenSAML76 (Java),

• Spring Security SAML77 (Java),

• SimpleSAMLphp78 (PHP),

• ruby‐saml79 (Ruby on Rails).

The following are the key information needed to understand the SAML authentication process.

75 https://digitaliser.dk/group/42063/resources
76 https://wiki.shibboleth.net/confluence/display/OS30/Home
77 https://spring.io/projects/spring‐security‐saml
78 https://simplesamlphp.org/
79 https://rubygems.org/gems/ruby‐saml/

3.3. SAML application integration 338

https://digitaliser.dk/group/42063/resources
https://wiki.shibboleth.net/confluence/display/OS30/Home
https://spring.io/projects/spring-security-saml
https://simplesamlphp.org/
https://rubygems.org/gems/ruby-saml/

Blitz Identity Provider, version 5.23

Principle of integration

To connect to Blitz Identity Provider in order to identify and authenticate users, the application can use the SAML

standard80 versions 1.0, 1.1, 2.0.

In this case, the process of interaction between the application and Blitz Identity Provider should be built in

accordance with the profile SAML Web Browser SSO Profile81.

The SAML standard is based on XML and defines ways to exchange information about user authentication and

their identification data (attributes, permissions).

In order to be able to interact, the service provider and the identity provider must first exchange interaction

settings described in the form of XML documents and called metadata. The service provider should receive the

Blitz Identity Provider settings called identity provider metadata (page 334).

Identification and authentication

See the description (page 166) of the interaction between a web app and Blitz Identity Provider via SAML.

Logout

An application connected to Blitz Identity Provider by SAML may also provide for the possibility of implement‐

ing a single logout. For these purposes Blitz Identity Provider supports SAML Single Logout Profile82. The ap‐

plication can send a <LogoutRequest> SAML‐request to Blitz Identity Provider and, if the single logout is

completed successfully, receive a <LogoutResponse> SAML‐response from Blitz Identity Provider. If the ap‐

plication should be involved in a single logout initiated by another application connected to Blitz Identity Provider,

then it should also provide the ability to process <LogoutRequest> requests received by the application from

Blitz Identity Provider. In case of successful completion of the local session, the application should notify Blitz

Identity Provider by sending it a SAML response <LogoutResponse>.

3.4 User management API

3.4.1 General information

REST API versions

Currently, the following versions of the REST API are available in Blitz Identity Provider, which differ in the autho‐

rization method:

Warning: Services of versionsv1 andv2 after the appearance of analogues in the newerv3will bemarked

as obsolete, and it will be recommended to switch from their use to services v3.

• v1 – REST services available at the following addresses:

– https://login.company.com/blitz/reg/api/v1/,

– https://login.company.com/blitz/api/v1/.

HTTP Basic authorization is used to authorize calls to these services. For an application that will call REST

services, you must set a password in the application settings on the REST tab of the application protocol

settings. All v1 REST services will be available to the application.

80 http://saml.xml.org/saml‐specifications
81 https://docs.oasis‐open.org/security/saml/v2.0/saml‐profiles‐2.0‐os.pdf
82 https://docs.oasis‐open.org/security/saml/v2.0/saml‐profiles‐2.0‐os.pdf

3.4. User management API 339

http://saml.xml.org/saml-specifications
http://saml.xml.org/saml-specifications
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

Blitz Identity Provider, version 5.23

Tip: If you do not plan to use any of the services, disable their call through the web server settings (nginx).

• v2 – REST services available at https://login.company.com/blitz/api/v2/. HTTP Basic au‐
thorization is used to authorize calls to most of these services, and OAuth 2.0 is used for some services.

• v3 – REST services available athttps://login.company.com/blitz/api/v3/. Oath 2.0 and se‐
curity tokens received fromBlitz Identity Provider are used to authorize calls to these services. Applications‘

access to various REST services is regulated through permissions (scope).

REST API access modes

Provided by Blitz Identity Provider services https://login.company.com/blitz/api/v3/ can be

called in two modes:

• user mode,

• system mode.

User access mode

In user mode, the service is called with rights in relation to the account of the currently authorized user. When

calling the service, the following headers must be passed:

• Authorization: Bearer <access token with user permissions> – authorization

header containing an access token with permissions of the (page 340) of the current user.

• X-Forwarded-For: <user IP address> is the header in which the value of the user’s IP address
should be transmitted. This value will be recorded in the security event Blitz Identity Provider.

• User-Agent: <User-Agent value> is the header in which the value User-Agent of the user’s

device should be passed. This value will be recorded in the Blitz Identity Provider security event.

Possible user permissions

Changing the password

blitz_change_password

To use the POST /blitz/api/v2/users/{subjectId}/password service.

Account rights management

blitz_user_rights

To use the services:

• GET /blitz/api/v3/rights/of/{subjectId},

• POST /blitz/api/v2/users/rights/change.

3.4. User management API 340

Blitz Identity Provider, version 5.23

Getting attributes

blitz_api_user

To use the GET /blitz/api/v3/users/{subjectId} service.

Changing attributes

blitz_api_user_chg

To use the POST /blitz/api/v3/users/{instanceId} service.

Getting two‐factor authentication settings, permissions, security question

blitz_api_usec

To use the services:

• GET /blitz/api/v3/users/{subjectId}/auth,

• GET /blitz/api/v3/users/{subjectId}/totps,

• GET /blitz/api/v3/users/{subjectId}/acls,

• GET /blitz/api/v3/users/{subjectId}/secQsn,

• POST /blitz/api/v3/users/{subjectId}/secQsn /check.

Changing the password, resetting sessions, changing the security question, two‐factor authentication settings,

revoking permissions

blitz_api_usec_chg

To use the services:

• POST /blitz/api/v3/users/{instanceId}/pswd,

• POST /blitz/api/v3/users/{instanceId}/sessions/reset,

• POST /blitz/api/v3/users/{instanceId}/secQsn,

• POST /blitz/api/v3/users/{subjectId}/auth,

• GET /blitz/api/v3/users/{subjectId}/totps /attach/qr,

• POST /blitz/api/v3/users/{subjectId /totps /attach/qr,

• DELETE /blitz/api/v3/users/{subjectId} /secQsn,

• DELETE /blitz/api/v3/users/{subjectId} /totps/{id},

• DELETE /blitz/api/v3/users/{subjectId} /acls/{id}.

Getting memorized devices

blitz_api_uapps

To use the GET /blitz/api/v3/users/{subjectId}/apps service.

3.4. User management API 341

Blitz Identity Provider, version 5.23

Deleting memorized devices

blitz_api_uapps_chg

To use the DELETE /blitz/api/v3/users/{subjectId}/apps/{id} service.

Getting security events

blitz_api_uaud

To use the GET /blitz/api/v3/users/{subjectId}/audit service.

Getting a list of external provider accounts

blitz_api_ufa

To use the GET /blitz/api/v3/users/{subjectId}/fa service.

Changing the list of external provider accounts

blitz_api_ufa_chg

To use the services:

• POST /blitz/api/v3/users/{subject Id}/fa/{fpType}/{fpName}/{sid},

• DELETE /blitz/api/v3/users/{subjectId}/fa/{fpType}/{fpName}/{sid}.

Login using a QR code

blitz_qr_auth

To use the services:

• GET /blitz/api/v3/auth/qr/{QR_code},

• POST /blitz/api/v3/auth/qr/{QR_code}/confirm,

• POST /blitz/api/v3/auth/qr/{QR_code}/refuse.

The application receives an access token for user permissions at the timeof user identification and authentication.

Note: The identification and authentication mechanisms are described in the sections:

• Getting the authorization code (page 300)

• Getting tokens (page 304)

System access mode

This section provides a list of permissions that an application can get to access the REST API.

3.4. User management API 342

Blitz Identity Provider, version 5.23

Possible system permissions (permissions granted to the application)

Access to services for working with organizations

blitz_groups

To use the services:

• GET /blitz/api/v2/grps/{id},

• POST /blitz/api/v2/grps,

• POST /blitz/api/v2/grps/{id}?profile={profile},

• DELETE /blitz/api/v2/grps/{id}?profile={profile},

• GET /blitz/api/v2/grps/{id}/members,

• POST /blitz/api/v2/grps/{id}/members/add?profile={profile},

• POST /blitz/api/v2/grps/{id}/members/rm?profile={profile}.

Assigning and revoking access rights

blitz_rights_full_access

To use the services:

• PUT /blitz/api/v3/rights,

• DELETE /blitz/api/v3/rights,

• GET /blitz/api/v3/rights/on,

• GET /blitz/api/v3/rights/of.

Revocation of access rights for slave accounts

blitz_rm_rights

To use the POST /blitz/api/v2/users/rights/change service.

Getting attributes of any user

blitz_api_sys_users

To use the GET /blitz/api/v3/users/{subjectId} service.

Changing attributes of any user

blitz_api_sys_users_chg

To use the POST /blitz/api/v3/users/{instanceId} service.

3.4. User management API 343

Blitz Identity Provider, version 5.23

Registration of user account

blitz_api_sys_users_reg

To use the PUT /blitz/api/v3/users service.

Getting two‐factor authentication settings, permissions of any user, security question

blitz_api_sys_usec

To use the services:

• GET /blitz/api/v3/users/{subjectId}/auth,

• GET /blitz/api/v3/users/{subjectId}/totps,

• GET /blitz/api/v3/users/{subjectId}/acls,

• GET /blitz/api/v3/users/{subjectId}/state,

• GET /blitz/api/v3/users/{subjectId}/secQsn,

• POST /blitz/api/v3/users/{subjectId}/secQsn/check.

Changing the password, two‐factor authentication settings and security question, resetting sessions, revoking

permissions of any user

blitz_api_sys_usec_chg

To use the services:

• POST /blitz/api/v3/users/{instanceId}/pswd,

• POST /blitz/api/v3/users/{instanceId}/sessions/reset,

• POST /blitz/api/v3/users/{subjectId}/auth,

• POST /blitz/api/v3/users/{subjectId}/state,

• GET /blitz/api/v3/users/{subjectId}/totps/attach/qr,

• POST /blitz/api/v3/users/{subjectId}/totps/attach/qr,

• POST /blitz/api/v3/users/{subjectId}/secQsn,

• DELETE /blitz/api/v3/users/{subjectId}/totps/{id},

• DELETE /blitz/api/v3/users/{subjectId}/acls/{id},

• DELETE /blitz/api/v3/users/{subjectId}/secQsn.

Getting any user’s devices

blitz_api_sys_uapps

To use the GET /blitz/api/v3/users/{subjectId}/apps service.

3.4. User management API 344

Blitz Identity Provider, version 5.23

Deleting any user’s devices

blitz_api_sys_uapps_chg

To use the DELETE /blitz/api/v3/users/{subjectId}/apps/{id} service.

Getting security events for any user

blitz_api_sys_uaud

To use the GET /blitz/api/v3/users/{subjectId}/audit service.

Getting a list of external provider accounts

blitz_api_sys_ufa

To use thePOST /blitz/api/v3/users/{subjectId}/fa/{fpType}/{fpName}/{sid} service.

Changing the list of external provider accounts

blitz_api_sys_ufa_chg

To use the DELETE blitz/api/v3/users/{subjectId}/fa/{fpType}/{fpName}/{sid} ser‐

vice.

Obtaining an access token issued by any external identity provider

fed_tkn_any

You can configure (page 109) Blitz Identity Provider to store user access tokens issued by external identity

providers. This permission allows you to retrieve a stored access token issued by any provider.

To use the GET /blitz/api/v3/users/${subjectId}/fedToken/${fedPointType}/
${fedPointName} service.

Obtaining an access token issued by a specific external provider

fed_tkn_${fedPointType}_${fedPointName}

You can configure (page 109) Blitz Identity Provider to store user access tokens issued by external identity

providers. This permission allows you to retrieve a stored access token issued by a provider with the ${fed-
PointType} type and ${fedPointName} name.

To use the GET /blitz/api/v3/users/${subjectId}/fedToken/${fedPointType}/
${fedPointName} service.

To get an access token for system permission, the application must make a request to get a token:

• Request POST https://login.company.com/blitz/oauth/te.

• The request must contain the header Authorization with the value“Basic {secret}“, where secret is

client_id:client_secret (for example, app:topsecret) in Base64 format.

• The request body must contain the following parameters:

– grant_type – takes the value client_credentials;

– scope is the requested system permission.

3.4. User management API 345

Blitz Identity Provider, version 5.23

• In response, the application will receive an access token access_token, its lifetime expires_in and

the token type token_type.

Tip: It is recommended that the application caches the received access token for repeated use for a time

slightly less than the expires_in parameter, after which it receives a new access token for updating in

the cache.

• Possible errors when calling /oauth/tematch RFC 6749 and are described here83.

Examples

Header

Authorization: Basic YWlzOm…XQ=

Request

POST blitz/oauth/te HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Basic ZG5ld…lg

grant_type=client_credentials&scope=blitz_groups

Response

{
"access_token":"QFiJ9mPgERPuusd36mQvD4mfzYolH_CmuddAJ3YKTOI",
"expires_in":3600,
"scope":"blitz_groups",
"token_type":"Bearer"

}

Error

When trying to call a REST service with an expired access token to it: HTTP 401 Unauthorized.

3.4.2 Accounts

This section contains the REST API for managing user accounts.

83 https://tools.ietf.org/html/rfc6749#section‐5.2

3.4. User management API 346

https://tools.ietf.org/html/rfc6749#section-5.2

Blitz Identity Provider, version 5.23

Registration

Method PUT https://login.company.com/blitz/reg/api/v3/users

Registration of a user account.

Required permissions: blitz_api_sys_users_reg.

Headers To send an e‐mail in English, specify the Accept-Language: en header (available only in v3).

Request body

user.attrs block

Attributes of the account being registered:

• first_name is a surname;

• name is the name;

• middle_name is a middle name;

• phone_number is a mobile phone number in the form of a composite object with attributes:

– value is a phone number in the format (country code)XXXXXXXXXX;

– verified – indicates that the phone has been verified – true or false;

• email – an email address in the form of a composite object with attributes:

– value – email address;

– verified – indicates that the address has been verified – true or false;

user.credentials block

Optional block.

• password is the password for the user account being created (must match the configured password pol‐

icy).

actions block

Optional block.

Actions performed after account registration:

• bindDynClient ‐ after registering an account, it is necessary to associate with it the previously released
free dynamic client_id of the mobile application instance.

It is used when registering a user from a mobile application.

Parameters:

– type is the name of the action. The value bindDynClientmust be passed;

– client_id is a value containing a dynamic client_id.

"actions": [
{

"type": "bindDynClient",
"client_id": "dyn~test_app~af…59"

}
]

3.4. User management API 347

Blitz Identity Provider, version 5.23

Examples

Registration with a confirmed email and phone number

Request

PUT /blitz/reg/api/v3/users HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"user": {

"attrs": {
"sub": "BIP-9TZYWXQ",
"family_name": "Иванов",
"given_name": "Иван",
"middle_name": "Иванович",
"email": {

"value": "ivan.ivanov@example.com",
"verified": true

},
"phone_number": {

"value": "79991234567",
"verified": true

}
},
"credentials": {

"password": "Qwerty_123"
}

}
}

Response

{
"instanceId": "Yml…Yw",
"subject": "BIP-9TZYWXQ",
"context": "M0F…pQ",
"cookies": [

{
"name": "css",
"value": "cp0…1o"

}
],
"instructions": []

}

3.4. User management API 348

Blitz Identity Provider, version 5.23

Errors

Listing 11: The password does not comply with the password policy

{
"errors": [

{
"errMsg": "Пароль не соответствует парольным политикам: длина менее 8␣

→˓символов, не содержит цифру, прописную букву, специальный символ.",
"field": "password"

}
],
"context": ""

}

Listing 12: The uniqueness of the fields is violated

{
"errors": [

{
"errMsg": "Пользователь с таким значением уже зарегистрирован. Для␣

→˓дальнейшей регистрации введите другое значение",
"field": "phone_number"

},
{

"errMsg": "Пользователь с таким значением уже зарегистрирован. Для␣
→˓дальнейшей регистрации введите другое значение",

"field": "email"
},
{

"errMsg": "Пользователь с таким значением уже зарегистрирован. Для␣
→˓дальнейшей регистрации введите другое значение",

"field": "sub"
}

],
"context": ""

}

Registration with an unconfirmed email and phone number

Request

PUT /blitz/reg/api/v3/users HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"user": {

"attrs": {
"sub": "BIP-1TZYWXQ",
"family_name": "Иванов",
"given_name": "Иван",
"middle_name": "Иванович",
"email": {

"value": "ivan.ivanov@example.com",
"verified": false

},
"phone_number": {

(continues on next page)

3.4. User management API 349

Blitz Identity Provider, version 5.23

(continued from previous page)

"value": "79991234567",
"verified": false

}
},
"credentials": {

"password": "Qwerty_123"
}

}
}

Response No.1

If registration is caused by the transmission of an unconfirmed phone and/or email, the service will send the

user a verification SMS with a confirmation code and/or email with a confirmation code and return the service

attributes instructions and context.

The response is when the user needs to enter verification codes:

{
"context": "NIi…qQ",
"instructions": [

{
"mobile": "+79991234567",
"exp": 1690444604,
"attemts": 3,
"name": "mbl-enter-code"

},
{

"email": "ivan.ivanov@example.com",
"exp": 1690644970,
"attemts": 3,
"name": "eml-enter-code"

}
]

}

The registration service can be configured so that the user is registered immediately, and contacts are registered

in the account after confirmation, in this case, the registration service will return the parameters of the registered

account (instanceId, subject, cookies), as well as instructions for optional confirmation of contacts in

the account:

{
"instanceId": "Yml…Yw",
"subject": "BIP-1TZYWXQ",
"context": "NIi…qQ",
"cookies": [

{
"name": "css",
"value": "t8_…84"

}
],
"instructions": [

{
"mobile": "+79991234567",
"exp": 1690444604,
"attemts": 3,
"name": "mbl-enter-code"

},

(continues on next page)

3.4. User management API 350

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"email": "ivan.ivanov@example.com",
"exp": 1690644970,
"attemts": 3,
"name": "eml-enter-code"

}
]

}

Confirmation codes

When receiving the instructions eml-enter-code and/or mbl-enter-code in response No. 1, you need

to ask the user to enter the confirmation code sent to email and mobile phone. After entering each code, call the

service to confirm the contact specified during registration by passing the value from the context parameter

to the request URL, and the confirmation code entered by the user in the request body:

Listing 13: Email confirmation request

POST /blitz/reg/api/v3/users/YNx9…Dw HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"email_code":"269302"

}

Listing 14: The response if the wrong code is entered from the email

{
"instructions": [

{
"email":"mail123@example.com",
"exp":1655283696,
"attemts":2,
"name":"eml-try-again"},

{
"mobile":"79988984169",
"exp":1655280756,
"attemts":3,
"name":"mbl-try-again"

}
],
"context":"kE6r…7g"

}

Listing 15: Response if the expiration date has expired or the number

of attempts has been exceeded (there will be a general error eml-ex-
pired)

{
"instructions": [

{
"email":"mail123@example.com",
"name":"eml-expired"

},
{

"mobile":"79988984169",

(continues on next page)

3.4. User management API 351

Blitz Identity Provider, version 5.23

(continued from previous page)

"exp":1655280756,
"attemts":3,"name":"mbl-try-again"

}
],
"context":"kE6r…7g"

}

Listing 16: Request to initiate the re‐sending of the code by email (spec‐

ify any code as the parameter value)

POST /blitz/reg/api/v3/users/YNx9…Dw HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"email_code_resend":"123456"

}

If the email has been successfully confirmed, and it remains to confirm the phone, then the instructions about

confirming the email will disappear in the service’s response, and only the instructions about the phone will

remain:

Listing 17: Response if the email is confirmed, but you need to confirm

the phone number

{
"instructions": [

{
"mobile":"79988984169",
"exp":1655280756,
"attemts":3,
"name":"mbl-try-again"

}
],
"context":"kE6r…7g"

}

Listing 18: Phone number confirmation request

POST /blitz/reg/api/v3/users/YNx9…Dw HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"sms_code":"953568"

}

Listing 19: Response if the wrong phone verification code is entered

{
"instructions": [

{
"email":"mail123@example.com",
"exp":1655283696,
"attemts":2,
"name":"eml-try-again"},

{

(continues on next page)

3.4. User management API 352

Blitz Identity Provider, version 5.23

(continued from previous page)

"mobile":"79988984169",
"exp":1655280756,
"attemts":3,
"name":"mbl-try-again"

}
],
"context":"kE6r…7g"

}

Listing 20: Response if the expiration date has expired

{
"instructions": [

{
"mobile":"79988984169",
"name":"mbl-expired"

}
],
"context":"kE6r…7g"

}

Listing 21: Response if the number of attempts is exceeded

{
"instructions": [

{
"mobile":"79988984169",
"name":"mbl-no-attempts"

}
],
"context":"kE6r…7g"

}

Listing 22: Request to initiate the re‐sending of the code via SMS (specify

any code as the parameter value)

POST /blitz/reg/api/v3/users/YNx9…Dw HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"sms_code_resend":"123456"

}

Response No.2

If all contacts were confirmed during the registration process, then as a result of calling the service, a user account

with the provided attributes and password will be registered in Blitz Identity Provider. The service will return the

user ID assigned to the account (subject). In addition, a number of service attributes (instructions,
cookies and context) will be returned.

{
"instanceId": "Yml…Yw",
"subject": "BIP-1TZYWXQ",
"context": "NIi…qQ",
"cookies": [

(continues on next page)

3.4. User management API 353

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"name": "css",
"value": "t8_…84"

}
],
"instructions": []

}

Error

Registration may fail. Then there will be an explanation of the problem in the body of the response. In particular,

if the uniqueness of an attribute is violated in Blitz Identity Provider, the message will contain a list of fields for

which uniqueness is violated.

{
"errors": [

{
"errMsg": "Такой пользователь уже зарегистрирован…",
"field": "email"

},
{

"errMsg": "Такой пользователь уже зарегистрирован…",
"field": "phone_number"

}
],
"context": ""

}

Registration with a confirmed email and phone number with the transfer of a dynamic client_id

Listing 23: Request

PUT /blitz/reg/api/v3/users HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"user": {

"attrs": {
"sub": "BIP-9TZYWXQ",
"family_name": "Иванов",
"given_name": "Иван",
"middle_name": "Иванович",
"email": {

"value": "ivan.ivanov@example.com",
"verified": true

},
"phone_number": {

"value": "79991234567",
"verified": true

}
},
"credentials": {

"password": "Qwerty_123"
}

},

(continues on next page)

3.4. User management API 354

Blitz Identity Provider, version 5.23

(continued from previous page)

"actions": [
{

"type": "bindDynClient",
"client_id": "dyn~test-app~c84f26f3-10f3-4b85-a6ee-a4ca12c41d26"

}
]

}

Registration in English

Listing 24: Request

curl -v --location --request PUT 'https://demo.identityblitz.com/blitz/reg/api/v3/
→˓users' \
--header 'Content-Type: application/json' \
--header 'Accept-Language: en' \
--header 'Authorization: Bearer ...' \
--data-raw '{

"user": {
"attrs": {

"sub": "username",
"phone_number": {

"value": "89101234567",
"verified": false

}
},
"credentials": {

"password": "Qwerty_123"
}

}

}'

Search

Method GET https://login.company.com/blitz/api/v1/users

Search for an account.

URL parameters A search query in Resource Query Language84 (RQL) format is passed to query. Operations:

• and ‐ simultaneous execution of search conditions;

• or – alternative fulfillment of search conditions (for example, search by different attributes);

• eq – checking the equality condition.

When searching for an attribute with a string value, it is recommended to explicitly specify the value type. For

example, string:02142527602.

Attention: If the search attribute is a string containing special characters such as &|()=<>,, then it is

necessary to adhere to the following algorithm for escaping and encoding parameters:

1. To encode all attribute values – to escape the special characters present in the parameters. For example,

if you are searching by phone +7(999)1234567, then the parameter value should be converted to the

value +7%28999%291234567.

84 https://github.com/kriszyp/rql

3.4. User management API 355

https://github.com/kriszyp/rql

Blitz Identity Provider, version 5.23

2. Assemble a common string to pass as a query parameter to the query. For example, phone_num-
ber=+7%28999%291234567.

3. Execute the URL Encode of the parameter value. For example, the parameter value is phone_num-
ber%3D%2B7%2528999%25291234567.

Examples

Simple search query

Request

GET /blitz/api/v1/users?query=eq(phone_number.string:79991234567) HTTP/1.1
Authorization: Basic YXBwX2lkOmFwcF9zZWNyZXQ=

Response

[
{

"instanceId":"Mzg5…nU",
"attrs":{

"sub":"854436f6-af58-4a3f-8cb7-c2c441eb4a76",
"family_name":"Иванов",
"given_name":"Иван",
"middle_name":"Иванович",
"phone_number":"79991234567",

}
}

]

Complex search query

Listing 25: Request

GET /blitz/api/v1/users?query=or(eq(phone_number,string:79991234567),eq(phone_
→˓number,string:79991112233)) HTTP/1.1
Authorization: Basic YXBwX2lkOmFwcF9zZWNyZXQ=

Search for a string containing special characters

3.4. User management API 356

Blitz Identity Provider, version 5.23

Listing 26: Request

GET /blitz/api/v1/users?query=phone_number%3D%2B7%2528999%25291234567 HTTP/1.1
Authorization: Basic YXBwX2lkOmFwcF9zZWNyZXQ=

Attributes

Getting attributes

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}

Getting attributes of any user by his ID.

Required permissions: blitz_api_user or blitz_api_sys_users.

Returns JSON containing user attributes. The metadata of the account is transmitted in the meta block.

Important: The instanceId attribute of metadata is needed to be able to call the following services in the

future for account attribute modification (page 358) and a password change (page 366).

Example

Request

GET /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a HTTP/1.1
Authorization: Bearer cNw…Nz

Response

{
"family_name": "Иванов",
"sub": "d2580c98 e584 4aad a591 97a8cf45cd2a",
"given_name": "Иван",
"locked": false,
"meta": {

"instanceId": "Mzg…J1",
"unmodifiable": [

"sub"
]

}
}

3.4. User management API 357

Blitz Identity Provider, version 5.23

Changing an attribute

Method POST https://login.company.com/blitz/api/v3/users/{instanceId}

Changing user attributes by instanceId. To find out the value of instanceId, you must first use the GET

method to call the service for getting the user attributes (page 357).

Required permissions: blitz_api_user_chg or blitz_api_sys_users_chg.

Request body The values of the user attributes that are being changed.

Returns JSON containing user attributes.

If the passed attribute values did not pass verification, the error HTTP 400 Bad Requestwill return and the

nested JSON including:

• the error type is input_error for cases when the request contains an incorrect or invalid value;

• error code (error);

• a text description of the error.

Note: Error codes and error texts can be defined specifically for various attributes and determined by the

logic of validators implemented for attributes.

Example

Request

POST /blitz/api/v3/users/Mzg…J1 HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json

{
"family_name":"Петров"

}

Response

{
"family_name": "Петров",
"given_name": "Иван",
"locked": false,
"sub": "5cffd68f-2cb8-4f7a-b0f3-9fa69a1fbbcd",
"meta": {

"instanceId": "Mzg…J1",
"unmodifiable": [

"sub"
]

}
}

3.4. User management API 358

Blitz Identity Provider, version 5.23

Error

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "contact_use_violation",
"desc": "Validation mobile:79988887812 is failed.",
"pos": "mobile"

}
]

}

Changing the phone number

Method Special case of attribute modification (page 358).

Modes:

• changing the phone number immediately to a confirmed one,

• changing the phone number with confirmation..

Request body

• phone_number is a mobile phone, in the form of a composite object with attributes:

– value is a phone number in the format (country code)XXXXXXXXXX;

– vrf – indicates that the phone has been confirmed – true.

Examples

Changing the number to a confirmed one

Request

POST /blitz/api/v3/users/Mzg…J1 HTTP/1.1
Authorization: Bearer wzb…Tw
Content-Type: application/json

{
"phone_number":

{
"value":"79991234567",
"vrf":true

}
}

3.4. User management API 359

Blitz Identity Provider, version 5.23

Response

{
"given_name": "Иван",
"family_name": "Иванов",
"meta": {

"instanceId": "Mzg5L…2M",
"unmodifiable": [

"uid"
]

},
"email": {

"value": "aivanov+2@gmail.com",
"vrf": true

},
"sub": "BIP-LIR6BO33XBBDHANE6DZPUTYVME",
"phone_number": {

"value": "+7(999)1234567",
"vrf": true

}
}

Changing the number with confirmation

Request

POST /blitz/api/v3/users/Mzg…J1 HTTP/1.1
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36␣
→˓(KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36
Authorization: Bearer wzb…Tw

{
"phone_number":{"value":"+79999999998","vrf":false}

}

Response No. 1

The interim response contains an indication of the need to confirm a new phone number. The confirmation code

is sent to the user at the new number.

{
"given_name": "Иван",
"family_name": "Иванов",
"meta": {

"instanceId": "Mzg5L…2M",
"unmodifiable": [

"sub"
]

},
"email": {

"value": "aivanov+2@gmail.com",
"vrf": true

},
"sub": "BIP-LIR6BO33XBBDHANE6DZPUTYVME",
"notes": {

(continues on next page)

3.4. User management API 360

Blitz Identity Provider, version 5.23

(continued from previous page)

"actions": {
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"exp": 300,
"status": "code_waiting",
"from": "+7(964)1234567",
"attr": "mobile",
"attempts_left": 3,
"value": "+7(999)9999998",
"action": "validate_mobile",
"created": 1598446512

}
},
"phone_number": {

"value": "+7(964)1234567",
"vrf": true

}
}

Confirmation code

You need to get a confirmation code for the new phone number from the user and send it to Blitz Identity Provider

in the request. In the URL of this request, use the value of the actions: state parameter from response No. 1:

POST /blitz/api/v3/users/notes/validate_mobile/ch_El…yQ HTTP/1.1
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…
Authorization: Bearer wzb…Tw

{
"cmd": "code",
"value": "123456"

}

Response No. 2

Listing 27: Successful phone number change

{
"given_name": "Иван",
"family_name": "Иванов",
"meta": {

"instanceId": "Mzg5L…2M",
"unmodifiable": [

"sub"
]

},
"email": {

"value": "aivanov+2@gmail.com",
"vrf": true

},
"sub": "BIP-LIR6BO33XBBDHANE6DZPUTYVME",
"phone_number": {

"value": "+7(999)9999998",
"vrf": true

}
}

3.4. User management API 361

Blitz Identity Provider, version 5.23

Error

Listing 28: Invalid code

{
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"exp": 2592000,
"from": "+7(964)1234567",
"attr": "phone_number",
"msg": "wrong_code",
"attempts_left": 2,
"created": 1649695409,
"value": "+7(999)9999998",
"action": "validate_mobile"

}

Listing 29: Exceeded the number of attempts to enter the correct code

{
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"id": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"attr": "phone_number",
"cause": "no_attempts_left",
"from": "+7(964)1234567",
"value": "+7(999)9999998",
"action": "validate_mobile"

}

Listing 30: The code is expired

{
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"id": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"attr": "phone_number",
"cause": "code_expired",
"from": "+7(964)1234567",
"value": "+7(999)9999998",
"action": "validate_mobile"

}

Changing the email address

Method Special case of attribute modification (page 358).

Modes:

• changing the email immediately to a confirmed one,

• changing email with confirmation.

Request body

• email – email address:

– value – email address;

– vrf – indicates that the address has been confirmed – true;

3.4. User management API 362

Blitz Identity Provider, version 5.23

Examples

Changing the address to a confirmed one

Request

POST /blitz/api/v3/users/Mzg…J1 HTTP/1.1
Authorization: Bearer wzb…Tw
Content-Type: application/json

{
"email":

{
"value":"mail@example.com",
"vrf":true

}
}

Response

{
"given_name": "Иван",
"family_name": "Иванов",
"meta": {

"instanceId": "Mzg5LW…2M",
"unmodifiable": [

"sub"
]

},
"mail": {

"value": "mail@example.com",
"vrf": true

},
"sub": "BIP-LIR6BO33XBBDHANE6DZPUTYVME",
"phone_number": {

"value": "+7(999)1234567",
"vrf": true

}
}

Address change with confirmation

Request

POST /blitz/api/v3/users/Mzg…J1 HTTP/1.1
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36␣
→˓(KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36
Authorization: Bearer wzb…Tw

{
"email":{"value":"mail@example.com","vrf":false}

}

3.4. User management API 363

Blitz Identity Provider, version 5.23

Response No. 1

The interim response contains an indication of the need to confirm the new email address. The confirmation code

is sent to the user at the new address.

{
"given_name": "Иван",
"family_name": "Иванов",
"meta": {

"instanceId": "Mzg5L…2M",
"unmodifiable": [

"sub"
]

},
"email": {

"value": "aivanov+2@gmail.com",
"vrf": true

},
"sub": "BIP-LIR6BO33XBBDHANE6DZPUTYVME",
"notes": {

"actions": {
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"exp": 86400,
"status": "code_waiting",
"from": "aivanov+2@gmail.com",
"attr": "mail",
"attempts_left": 3,
"value": "mail@example.com",
"action": "validate_mail",
"created": 1598446512

}
},
"phone_number": {

"value": "+7(964)1234567",
"vrf": true

}
}

Confirmation code

You need to get a confirmation code for the new email address from the user and send it to Blitz Identity Provider

in the request. In the URL of this request, use the value of the actions: state parameter from response No.

1:

POST /blitz/api/v3/users/notes/validate_email/ch_El…yQ HTTP/1.1
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…
Authorization: Bearer wzb…Tw

{
"cmd": "code",
"value": "123456"

}

3.4. User management API 364

Blitz Identity Provider, version 5.23

Response No. 2

Listing 31: Successful email address change

{
"given_name": "Иван",
"family_name": "Иванов",
"meta": {

"instanceId": "Mzg5L…2M",
"unmodifiable": [

"sub"
]

},
"email": {

"value": "mail@example.com",
"vrf": true

},
"sub": "BIP-LIR6BO33XBBDHANE6DZPUTYVME",
"phone_number": {

"value": "+7(999)9999998",
"vrf": true

}
}

Error

Listing 32: Invalid code

{
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"exp": 2592000,
"from": "aivanov+2@gmail.com",
"attr": "email",
"msg": "wrong_code",
"attempts_left": 2,
"created": 1649695409,
"value": "mail@example.com",
"action": "validate_email"

}

Listing 33: Exceeded the number of attempts to enter the correct code

{
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"id": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"attr": "email",
"cause": "no_attempts_left",
"from": "aivanov+2@gmail.com",
"value": "mail@example.com",
"action": "validate_email"

}

Listing 34: The code is expired

{
"state": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",
"id": "ch_EludIw5fEDouy8wpT_GVOJ7rLxKfZUi-G3blijf34yQ",

(continues on next page)

3.4. User management API 365

Blitz Identity Provider, version 5.23

(continued from previous page)

"attr": "email",
"cause": "code_expired",
"from": "aivanov+2@gmail.com",
"value": "mail@example.com",
"action": "validate_email"

}

Passwords

Changing the password

Method POST https://login.company.com/blitz/api/v3/users/{instanceId}/pswd

Password change. To find out the value of theinstanceId for the user, youmust first call the service for getting

the user attributes (page 357) with the GET method.

Required permissions: blitz_api_usec_chg or blitz_api_sys_usec_chg.

Headers

• When changing the password in user mode, you need to transmit headers with the user’s IP address and

User-Agent.

• In the scenario of the user changing the password independently in the User Profile, it is possible to reset

the user’s sessions. In this case, it may be undesirable for the user to log out of the current device/browser.

In order to specify Blitz Identity Provider that a certain device must be saved based on the results of a

successful password change (do not log out from it), you need to transfer the IB-CI-UA-ID header with

the identifier of the current user device from the application to the password change service call.

Tip: The ID of the user’s current device can be obtained from the identification token (page 309).

• To send an e‐mail in English, specify the Accept-Language: en header (available only in v3).

Request body

• current – the user’s current password (only when changing the password in user mode, it must be trans‐

mitted).

• password is the user’s new password (optional parameter). If the parameter is omitted, Blitz Identity

Provider will generate a new password on its own.

• resetSessions – if the parameter is not specified or is set to true, then when changing the password,
all user sessions will be canceled and the stored devices will be deleted. If you only need to change the

password without resetting sessions, then you must explicitly specify the parameter in the value false.

• sendPswdToAttr is the name of the attribute with the phone number to send the password to the user

(optional parameter). If the parameter is set, an SMS with a password will be sent to the user’s phone from

the specified attribute.

Returns

• In case of a successful call to Blitz Identity Provider ‐ HTTP 204 No Content.

• If the password change failed, an error message is displayed:

– HTTP 401 Unauthorized in case of an access control error, the access token is incorrect or the

user’s current password is incorrect.

– HTTP 400 Bad Request ‐ the new password does not meet the requirements of the password

policy.

3.4. User management API 366

Blitz Identity Provider, version 5.23

Examples

Request

Listing 35: Custom password change mode

POST /blitz/api/v3/users/Mzg…J1/pswd HTTP/1.1
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…
Authorization: Bearer wzb…Tw
IB-CI-UA-ID: {SHA256}rVWFmwgRKWeW_flH4CA4yuW7OhKZ32Da94m0kzwWsVs

{
"current": "QWErty123",
"password": "P@$$w0rd",
"resetSessions": false

}

Listing 36: Password change mode by the system

POST /blitz/api/v3/users/Mzg…J1/pswd HTTP/1.1
Content-Type: application/json
Authorization: Bearer qwa…Ez

{
"password": "P@$$w0rd",
"resetSessions": true

}

Listing 37: Sending a new password via SMS with automatic password

generation

POST /blitz/api/v3/users/Mzg…J1/pswd HTTP/1.1
Content-Type: application/json
Authorization: Bearer qwa…Ez

{
"sendPswdToAttr": "phone_number"

}

3.4. User management API 367

Blitz Identity Provider, version 5.23

Listing 38: Password change request in English

curl -v --location --request POST 'https://demo.identityblitz.com/blitz/api/v3/
→˓users/YnVpbHQtaW46a2dhdnJpbG92QGlkYmxpdHoucnU6MTcxMDU5ODgyODY3MjU0ODg2NA/pswd' \
--header 'Content-Type: application/json' \
--header 'Accept-Language: en' \
--header 'Authorization: Bearer ...' \
--data-raw '{"password": "nN2L98Nu1234"}'

Errors

Listing 39: Incorrect current password

{
"type": "security_error",
"error": "invalid_credential",
"desc": "Wrong subject identifier or current password"

}

Listing 40: Incorrect access token

{
"type": "security_error",
"error": "bad_access_token",
"desc": "BEARER_AUTH: CRID does not match"

}

Listing 41: The newpassword does not complywith the password policy:

too short

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "Password's length must be greater than 6",
"pos": "password",
"params": {

"rule": "to_short",
"low": 6

}
}

]
}

Listing 42: The new password does not comply with the password policy

set in the LDAP directory

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "Failed to update password\n",
"pos": "password",
"params": {

(continues on next page)

3.4. User management API 368

Blitz Identity Provider, version 5.23

(continued from previous page)

"rule": "id_store"
}

}

Listing 43: The newpassword does not complywith the password policy:

does not contain the required character groups

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "Password doesn't match enough symbols groups",
"pos": "password",
"params": {

"rule": "not_enough_groups",
"no_matched_groups": [

{
"desc": "password.policy.desc.digits",
"min_number_symbols": 1

},
{

"desc": "password.policy.desc.capital",
"min_number_symbols": 1

},
{

"desc": "password.policy.desc.special",
"min_number_symbols": 1

}
]

}
}

]
}

Listing 44: The newpassword does not complywith the password policy:

the password was previously used

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "Password found in previous used ones",
"pos": "password",
"params": {

"rule": "in_password_history"
}

}
]

}

3.4. User management API 369

Blitz Identity Provider, version 5.23

Listing 45: The newpassword does not complywith the password policy:

the new password matches the current one

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "A new password can't be the same as the current",
"pos": "password",
"params": {

"rule": "eq_current"
}

}
]

}

Listing 46: The newpassword does not complywith the password policy:

in the new password, the insufficient number of characters differs from

the previous one

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "There are not enough new characters in a new password",
"pos": "password",
"params": {

"rule": "not_enough_new_chars",
"minNew": 5

}
}

]
}

Listing 47: The new password does not comply with the password pol‐

icy: the password includes an entry from the dictionary of prohibited

passwords

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "Password contains a word from the stop dictionary",
"pos": "password",
"params": {

"rule": "in_stop_dic",
"stop_word": "qwerty"

}
}

]

(continues on next page)

3.4. User management API 370

Blitz Identity Provider, version 5.23

(continued from previous page)

}

Listing 48: The newpassword does not complywith the password policy:

the password matches the dictionary password

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "Password found in a password dictionary",
"pos": "password",
"params": {

"rule": "in_password_dic"
}

}
]

}

Listing 49: The newpassword does not complywith the password policy:

the password was changed earlier than the allowed period

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "password_policy_violated",
"desc": "Password is too young",
"pos": "password",
"params": {

"rule": "too_young",
"minAgeInSec": 86400

}
}

]
}

Listing 50: The passed attribute for sending the password does not exist

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "wrong_value",
"desc": "Wrong mobile attribute 'phone_number_wrong'",
"pos": "sendPswdToAttr"

}
]

}

3.4. User management API 371

Blitz Identity Provider, version 5.23

Listing 51: The user does not have a phone attribute set to send the

password to the phone

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "wrong_value",
"desc": "User not contains mobile attribute 'phone_number'",
"pos": "sendPswdToAttr"

}
]

}

Changing the password of subordinate account

Method POST https://login.company.com/blitz/api/v2/users/{subjectId}/
password

Changing the password of themanaged user account using themaster user account. subjectId is the identifier
(sub) of the managed account.

Headers A header with a permission access token named blitz_change_password received by the lead

account should be added to the request. The lead user can trigger a change of the subordinary account password

only if the previously lead user was given (page 413) the right to change the password change_password.

Request body The value attribute with the value of the new password, which must meet the requirements of

the configured password policy.

Returns

• If the password is changed successfully, the status is HTTP 200 (OK).

• If there is an error, a description of the error received.

Example

Request

POST /blitz/api/v2/users/c574a512-3704-4576-bc3a-3fe28b636e85/password HTTP/1.1
Authorization: Bearer cNwIX…Tg
Content-Type: application/json

{"value":"QWErty1234"}

3.4. User management API 372

Blitz Identity Provider, version 5.23

Error

{
"errors": [

{
"code": "access_denied",
"desc": "Not enough rights: change_password",
"params": {}

}
]

}

Authentication modes

Checking the status

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/auth

Checking the status of the following authentication modes of the SubjectID account:

• two‐factor authentication enabled;

• the presence of an established indication of the need to change the password;

• the presence of a temporary ban on login using a certain login method.

Required permissions: blitz_api_usec or blitz_api_sys_usec.

Returns

• requiredFactor indicates that two‐factor authentication is enabled. It can take the following values:

– missing, 0 or 1 ‐ disabled,

– 2 ‐ enabled (2nd authentication factor is required);

• needPasswordChange indicates the need to change the password when logging in;

• methodsLocked is a list of blocked authentication methods. The user cannot use these login methods,

but can use the rest.

Example

Request

GET /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/auth HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

{
"requiredFactor": 2,
"needPasswordChange": true,
"methodsLocked": ["password"]

}

3.4. User management API 373

Blitz Identity Provider, version 5.23

Changing authentication modes

POST https://login.company.com/blitz/api/v3/users/{subjectId}/auth

Changes to user authentication modes.

Required permissions: blitz_api_usec_chg``or ``blitz_api_sys_usec_chg.

Headers In user mode, headers with the user’s IP address and User-Agentmust be passed.

Request body It may contain parameters:

• requiredFactor indicates that two‐factor authentication is enabled. Values:

– null is disabled,

– 2 is enabled (2nd authentication factor is required);

• needPasswordChange indicates the need to change the password when logging in – only passing the

value true is allowed;

• methodsLocked is a list of blocked authentication methods. The user cannot use these login methods,

but can use the rest. Currently, Blitz Identity Provider only supports blocking the use of password login

(password).

Example

Request

POST /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/auth HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…
Content-Type: application/json

{
"requiredFactor": 2,
"needPasswordChange": true,
"methodsLocked": ["password"]

}

Response

{
"requiredFactor": 2,
"needPasswordChange": true,
"methodsLocked": ["password"]

}

3.4. User management API 374

Blitz Identity Provider, version 5.23

Error

Listing 52: HTTP 400 Bad Request: The user has not configured any

method for the second authentication factor

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "has_not_sf_methods",
"desc": "User 'd2580c98-e584-4aad-a591-97a8cf45cd2a' has not any␣

→˓second factor method",
"pos": "requiredFactor"

}
]

}

User properties

Obtaining properties

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/props

Obtaining properties of a user by user’s ID.

Required permissions: blitz_api_user or blitz_api_sys_users.

Returns HTTP 200 and JSON containing the user’s properties.

Example

Request

GET /blitz/api/v3/users/854436f6-af58-4a3f-8cb7-c2c441eb4a76/props HTTP/1.1
Content-Type: application/json
Authorization: Bearer cNw…Nz

Response

{
"pipes.info.fed.readOn":1706530413,
"fcOn":1707814866,
"pipes.info.adv-totp.readOn":1696236815,
"pipes.addKey.mobile.Android.disagreedOn":1701099042,
"pipes.act.mobile.skippedOn":1695649488,
"wak.failedOn":1689864670,
"pipes.act.mobile.outdatedOn":1695649486,
"last2fa":"x509",
"pipes.addKey.pc.Windows.disagreedOn":1706100800,
"pipes.act.mail.skippedOn":1689764346

}

3.4. User management API 375

Blitz Identity Provider, version 5.23

Adding, modifying, and deleting properties

Method POST https://login.company.com/blitz/api/v3/users/{subjectId}/props

Adding, modifying, and deleting user properties by user’s ID.

Required permissions: blitz_api_user or blitz_api_sys_users.

Request body JSON with a list of properties to add and delete. To change a value, you need to send the new

property value in the add section. To delete a property, specify the property to be deleted.

Returns HTTP 200 and JSON containing the actual properties.

Example

Request

Listing 53: Deleting the last2fa property and adding testBool

POST /blitz/api/v3/users/854436f6-af58-4a3f-8cb7-c2c441eb4a76/props HTTP/1.1
Content-Type: application/json
Authorization: Bearer cNw…Nz

{
"remove" : ["last2fa"],
"add" : {
"testBool" : true

}
}

Listing 54: Changing the testBool property

POST /blitz/api/v3/users/854436f6-af58-4a3f-8cb7-c2c441eb4a76/props HTTP/1.1
Content-Type: application/json
Authorization: Bearer cNw…Nz

{
"add" : {
"testBool" : false

}
}

3.4. User management API 376

Blitz Identity Provider, version 5.23

Listing 55: Deleting the testBool property

POST /blitz/api/v3/users/854436f6-af58-4a3f-8cb7-c2c441eb4a76/props HTTP/1.1
Content-Type: application/json
Authorization: Bearer cNw…Nz

{
"remove" : ["testBool"]

}

Response

Listing 56: Deleting the last2fa property and adding testBool

{
"pipes.act.mobile.skippedOn":1695649488,
"pipes.act.mobile.outdatedOn":1695649486,
"testBool":true,
"pipes.addKey.mobile.Android.disagreedOn":1701099042,
"pipes.info.adv-totp.readOn":1696236815,
"wak.failedOn":1689864670,
"pipes.info.fed.readOn":1706530413,
"pipes.act.mail.skippedOn":1689764346,
"fcOn":1707814866,
"pipes.addKey.pc.Windows.disagreedOn":1706100800

}

Listing 57: Changing the testBool property

{
"pipes.act.mobile.skippedOn":1695649488,
"pipes.act.mobile.outdatedOn":1695649486,
"testBool":false,
"pipes.addKey.mobile.Android.disagreedOn":1701099042,
"pipes.info.adv-totp.readOn":1696236815,
"wak.failedOn":1689864670,
"pipes.info.fed.readOn":1706530413,
"pipes.act.mail.skippedOn":1689764346,
"fcOn":1707814866,
"pipes.addKey.pc.Windows.disagreedOn":1706100800

}

3.4. User management API 377

Blitz Identity Provider, version 5.23

Listing 58: Deleting the testBool property

{
"pipes.act.mobile.skippedOn":1695649488,
"pipes.act.mobile.outdatedOn":1695649486,
"pipes.addKey.mobile.Android.disagreedOn":1701099042,
"pipes.info.adv-totp.readOn":1696236815,
"wak.failedOn":1689864670,
"pipes.info.fed.readOn":1706530413,
"pipes.act.mail.skippedOn":1689764346,
"fcOn":1707814866,
"pipes.addKey.pc.Windows.disagreedOn":1706100800

}

TOTP

Tip: See RFC 6238 TOTP: Time‐Based One‐Time Password Algorithm85.

Checking for TOTP availability

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/totps

Checking whether the user has a configured TOTP confirmation code generator.

Required permissions: blitz_api_usec or blitz_api_sys_usec.

Returns If TOTP is configured, its settings will be received in response.

Example

Request

GET /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/totps HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

[
{

"id": "SW_TOTP_1_d2580c98-e584-4aad-a591-97a8cf45cd2a",
"len": 6,
"name": "Google Authenticator"

}
]

85 https://tools.ietf.org/html/rfc6238

3.4. User management API 378

https://tools.ietf.org/html/rfc6238

Blitz Identity Provider, version 5.23

TOTP linking

Linking to the user account of the TOTP generator is carried out in two stages.

Stage No.1

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/totps/
attach/qr

Request for a QR code and a linking string in Blitz Identity Provider.

Required permissions: blitz_api_usec_chg``or ``blitz_api_sys_usec_chg.

Headers In user mode, headers with the user’s IP address and User-Agentmust be passed.

Returns Attributes:

• base64QRCode is the QR code of the generator linking that needs to be displayed to the user;

• base32Secret is a secret generator linking string that needs to be displayed to the user if it is incon‐

venient for him to photograph the QR code and he prefers to enter the linking code into the generator

manually.

Example

Request

GET /blitz/api/v3/users/d25..2a/totps/attach/qr HTTP/1.1
Authorization: Bearer cN..z
Cache-Control: no-cache

Response

{
"base64QRCode": "iVB…g==",
"base32Secret": "W247OHVTPPTIAOXMGKK6Z7BZ3DEYWO74"

}

Stage No.2

Method POST https://login.company.com/blitz/api/v3/users/{subjectId}/totps/
attach/qr

Confirmation of linking registration.

Required permissions: blitz_api_usec_chg``or ``blitz_api_sys_usec_chg.

Request body

• base32Secret is the secret initialization string of the TOTP generator;

• otpCode is the confirmation code generated by the generator using the TOTP algorithm from the secret

string and the current time slot;

• name is the display name of the TOTP generator (optional).

Returns

• If successful ‐ HTTP 204 No Content.

3.4. User management API 379

Blitz Identity Provider, version 5.23

• In case of an error, the service ‐ HTTP 400 Bad Request.

Example

Request

POST /blitz/api/v3/users/d2580c98..cd2a/totps/SW_TOTP_1_d2580c98..cd2a HTTP/1.1
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)

{
"base32Secret": "W247OHVTPPTIAOXMGKK6Z7BZ3DEYWO74",
"name": "Google Authenticator",
"otpCode": "123456"

}

Response

{
"base64QRCode": "iVB…g==",
"base32Secret": "W247OHVTPPTIAOXMGKK6Z7BZ3DEYWO74"

}

Error

Listing 59: The wrong code was passed

{
"type": "process_error",
"error": "wrong_otp_code"

}

Deleting the linking

Method DELETE https://login.company.com/blitz/api/v3/users/{subjectId}/
totps/{id}

Deleting the linking of the TOTP generator to the user account.

Required permissions: blitz_api_usec_chg``or ``blitz_api_sys_usec_chg.

URL parameters The id is specified as received (page 378) linking ID.

Headers In user mode, headers with the user’s IP address and User-Agentmust be passed.

Returns If successful, the service will return HTTP 204 No Content.

3.4. User management API 380

Blitz Identity Provider, version 5.23

Example

Listing 60: Request

DELETE /blitz/api/v3/users/d..2a/totps/SW_TOTP_1_d..2a HTTP/1.1
Authorization: Bearer cN..z
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)...

Account status

Checking account status

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/state

Checking account status:

• presence of blocking due to inactivity;

• presence of a ban on blocking due to inactivity.

Required permissions: blitz_api_usec or blitz_api_sys_usec.

Examples

Request

GET /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/state HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Responses

Listing 61: The account status has not been initialized yet (the account

has just been created or has not been used before logging in since the

function appeared)

{
"name": "initial"

}

Listing 62: The account is active

{
"name": "active",
"checkedOn": 1688106755

}

Note: The checkedOn parameter stores the timestamp of the last status check.

3.4. User management API 381

Blitz Identity Provider, version 5.23

Listing 63: The account has been blocked due to prolonged inactivity

{
"name": "inactivityLock",
"on": 1688106646

}

Note: The on parameter stores the blocking time.

Listing 64: The account is in the list of exclusions and cannot be blocked

due to inactivity before the date of the till parameter

{
"name": "untouchable",
"till": 1689106755

}

Note: If the till parameter is missing, then the account cannot be blocked at all due to inactivity.

Changing the account status

Method POST https://login.company.com/blitz/api/v3/users/{subjectId}/state

Changing the status of the user account.

Required permissions: blitz_api_sys_usec_chg.

Request body Possible parameters:

• name is the assigned state. You can only assign the untouchable state;

• till is an optional parameter in which you can specify the time until which the account is assigned the

untouchable status. To cancel the untouchable status, you can assign the current time to the till
parameter.

Returns In case of a successful call, HTTP 204 No Content.

Example

Listing 65: Request

POST /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/state HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Content-Type: application/json

{
"name": "untouchable",
"till": 1689106755

}

3.4. User management API 382

Blitz Identity Provider, version 5.23

External providers

List of external providers

Method GET /api/v3/users/{subjectId}/fa

Getting a list of account links of external identity providers to a user account.

Required permissions: blitz_api_ufa or blitz_api_sys_ufa.

Returns Binding type and name (fpType and fpName) and the binding identifier (sid).

Example

Request

GET /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/fa HTTP/1.1
Authorization: Bearer m9tuVBNUnizkuwFnq95IXQm1XTplXLUFD1O5TUmGij4
Cache-Control: no-cache

Response

[
{

"sid": "1000347601",
"fpType": "esia",
"fpName": "esia_1"

},
{

"sid": "1234",
"fpType": "tcs",
"fpName": "tcs_1"

}
]

Linking a provider by ID

Method POST /api/v3/users/{subjectId}/fa/{fpType}/{fpName}/{sid}

Linking the account of an external identity provider to a user account, if logging in through an external identity

provider was previously performed by othermeans and the identifier (sid) of the account in the external identity
provider is known.

Required permissions: blitz_api_ufa_chg or blitz_api_sys_ufa_chg.

URL parameters The user’s guid (subjectId), the type of external provider (fpType), the name of the

external provider (fpName) and the account ID in the external provider (sid).

Request body JSON:

• federatedAccountName: name of the external account to be bound (optional). If the parameter is

not passed, the previous name is used.

Returns If the call is successful, 204 No Content.

3.4. User management API 383

Blitz Identity Provider, version 5.23

Example

Listing 66: Request

POST /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/fa/tcs/tcs_1/1234␣
→˓HTTP/1.1
Authorization: Bearer m9tuVBNUnizkuwFnq95IXQm1XTplXLUFD1O5TUmGij4

{
"federatedAccountName": "Elle Woods"

}

Linking a provider

Linking to an external provider account with an unknown account ID in the external provider is carried out in two

stages:

• Request for linking instructions.

• Linking by the user in the browser.

Method POST /api/v2/users/current/fa/bind

Request for linking instructions.

Request body

• fp is the identifier of the provider whose profile should be linked to;

• callback is the address towhich the user should be returned after successfully linking the social network
account;

• isPopup – whether the identity provider’s page needs to be opened in the popup window (optional).

Returns The redirectTo parameter with a link to which the user must be directed in the browser to complete

the second stage and create a linking of the user account to an external identity provider.

Example

Request

POST /blitz/api/v2/users/current/fa/bind HTTP/1.1
Authorization: Basic ZG5ldm5pay10ZXN0Lm1vcy5ydTphUU56S0JuY2VBQVQwelg
Content-Type: application/json

{
"fp": "vk:vk_1",
"callback": "https://app.company.com/callback"

}

3.4. User management API 384

Blitz Identity Provider, version 5.23

Response

200 OK
{
"redirectTo": "https://login.company.com/blitz/api/v2/users/current/fa/bind/auth/
→˓fc111c86-5193-42a2-862a-d819a4f45a86"
}

Deleting a provider linking

Method DELETE /api/v2/users/{subjectId}/fa/{fpType}/{fpName}/{sid}

Deleting the linking of the external provider to the user.

URL parameters guid of the user (subjectId), type of external provider (fpType), name of the external

provider (fpName) and the account ID in the external provider (page 383) (sid).

Example

Listing 67: Header

DELETE /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/fa/tcs/tcs_1/1234␣
→˓HTTP/1.1
Authorization: Bearer m9tuVBNUnizkuwFnq95IXQm1XTplXLUFD1O5TUmGij4

Obtaining a user access token

Method GET /api/v3/users/${subjectId}/fedToken/${fedPointType}/
${fedPointName}

Obtaining a valid user access token in an external identity provider with type ${fedPointType} and name

${fedPointName}. An access token is considered valid if its lifetime is greater than the minimum allowed

lifetime (30 seconds by default). If an access token is invalid, but it was saved along with an update token, an

attempt is made to update the access token. If the attempt is successful, this method produces a new access

token.

Important: Obtaining a token is only possible for those providers that have the Remember tokens setting

enabled (page 109).

Required permissions: fed_tkn_any or fed_tkn_${fedPointType}_${fedPointName}.

Note: In order for an application to request an access token, these permissions must be specified (page 171)

for it as well.

Returns

• HTTP 404: access token not found.

• HTTP 200 and JSON that contains user access token data in the case of success. For each token, the key

sid, the token value token and the validity period expiresOn in Unix‐time format are transmitted.

• HTTP 401: no permission or wrong provider.

3.4. User management API 385

Blitz Identity Provider, version 5.23

Example

Request

GET /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/fedToken/tcs/tcs_1␣
→˓HTTP/1.1
Authorization: Bearer m9tuVBNUnizkuwFnq95IXQm1XTplXLUFD1O5TUmGij4
Content-Type: application/json

Response

Listing 68: Success

{
"da0c69c5-aef8-41e4-a37f-89c6d30abdfa": {

"expiresOn": 1711125311,
"token": "t.eFgoMik6regKsLjxfds1V0PlNEv_smx-W_x"

},
"00000000-1111-41e4-a37f-89c6d30abdfa": {

"expiresOn": 1711125344,
"token": "t.ddddddddddLjxfds1V0PlNEv_smx-W_x"

}
}

Listing 69: No required permission

{
"type":"security_error",
"error":"bad_access_token",
"desc":"No enough scopes or wrong subject Id"

}

Audit events

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/audit

Retrieving a list of security events registered to the user’s account.

Required permissions: blitz_api_uaud or blitz_api_sys_uaud.

URL parameters

• rql is a request to filter the output information in the format Resource Query Language86 (RQL). Filtering

by the attribute ts (time of the event) is supported.

Operations:

– and ‐ simultaneous execution of search conditions;

– le – checking the condition “less than or equal to”;

– ge – checking the condition “greater than or equal to”;

– limit – a limit on the number of records to be returned.

• ua – the required type of output of information about the UserAgent (attribute ua). Options:

– none – not to return the UserAgent;

86 https://github.com/kriszyp/rql

3.4. User management API 386

https://github.com/kriszyp/rql

Blitz Identity Provider, version 5.23

– parsed – return the UserAgent in disassembled form (separate browser and operating system with

their versions);

If the ua parameter is omitted, then UserAgent (the ua attribute) will be returned simply as a string.

Returns JSON containing a list of account audit events for the specified time period.

Examples

Without parsing information about UserAgent

Request

GET /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/audit?rql=and(ge(ts,
→˓1637230238),le(ts,1637250238),limit(2)) HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

[
{

"sbj": "af583e70-fe39-407d-a87e-06cd0ec1830c",
"ua": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) …",
"ts": 1637250238015,
"cAthM": "Basic",
"ipCt": "Москва",
"ipRad": 20,
"cId": "test_app",
"ip": 1406987879,
"obj": "af583e70-fe39-407d-a87e-06cd0ec1830c",
"ipSt": "Москва",
"lpId": "test_app",
"pid": "ddeebaba-2dc3-41bb-b539-7f0e472414a3",
"ipLat": 55.7483,
"prms": {

"used_login": "test@yandex.ru",
"auth_methods": "password",
"authnDone": "true",
"id_store": "389-ds"

},
"type": "login",
"ipCtr": "Россия",
"proc": "profile",
"ipLng": 37.6171,
"sid": "54914ac3-0d39-40d3-9617-92e0e7fe07ab"

}
]

3.4. User management API 387

Blitz Identity Provider, version 5.23

With parsing information about UserAgent

Request

GET /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/audit?rql=and(ge(ts,
→˓1637230238),le(ts,1637250238),limit(2))&ua=parsed HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

[
{

"sbj": "af583e70-fe39-407d-a87e-06cd0ec1830c",
"ua": {

"broName": "Chrome",
"broVer": "109",
"deviceType": "pc",
"raw": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) …",
"osName": "macOS",
"osVer": "10.15.7"

},
"ts": 1637250238015,
"cAthM": "Basic",
"ipCt": "Москва",
"ipRad": 20,
"cId": "test_app",
"ip": 1406987879,
"obj": "af583e70-fe39-407d-a87e-06cd0ec1830c",
"ipSt": "Москва",
"lpId": "test_app",
"pid": "ddeebaba-2dc3-41bb-b539-7f0e472414a3",
"ipLat": 55.7483,
"prms": {

"used_login": "test@yandex.ru",
"auth_methods": "password",
"authnDone": "true",
"id_store": "389-ds"

},
"type": "login",
"ipCtr": "Россия",
"proc": "profile",
"ipLng": 37.6171,
"sid": "54914ac3-0d39-40d3-9617-92e0e7fe07ab"

}
]

3.4. User management API 388

Blitz Identity Provider, version 5.23

Known devices and sessions

List of known devices

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/uas

Getting a list of the user’s devices.

Required permissions: blitz_api_uapps or blitz_api_sys_uapps.

Returns JSON containing a list of the user’s devices.

Example

Request

GET /blitz/api/v3/users/af583e70-fe39-407d-a87e-06cd0ec1830c/uas HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

[
{

"name": "Chrome 96",
"lastUsed": 1637249978,
"tp": "Browser",
"os": "macOS 10.15.7",
"newlyCreated": false,
"deviceType": "pc",
"latestIp": "172.25.0.1",
"subjectId": "af583e70-fe39-407d-a87e-06cd0ec1830c",
"id": "SHA256_Z0x284K3qv313WViRuPfV5rglhDuYqSn4ztdxVKMBec",
"trusted": false,
"cls": true,
"deviceId": "738f5ce91f912ddd4a0cc5fefa9e8c63",
"device": "PC"

}
]

Deleting a device from the list

Method DELETE https://login.company.com/blitz/api/v3/users/{subjectId}/uas/
{id}

Deleting a device from the list of stored ones. As the id, you need to pass received (page 389) device ID.

Required permissions: blitz_api_uapps_chg or blitz_api_sys_uapps_chg.

Headers In user mode, headers with the user’s IP address and User-Agentmust be passed.

3.4. User management API 389

Blitz Identity Provider, version 5.23

Example

Listing 70: Request

DELETE /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/uas/SHA256_
→˓Z0x284K3qv313WViRuPfV5rglhDuYqSn4ztdxVKMBec HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)

Resetting user sessions

Method POST https://login.company.com/blitz/api/v3/users/{subjectId}/
sessions/reset

Resetting user sessions.

Required permissions: blitz_api_usec_chg or blitz_api_sys_usec_chg.

Headers

• In user mode, headers with the user’s IP address and User-Agentmust be passed.

• If the user’s logout from the current device/browser is undesirable, you need to transfer the

IB-CI-UA-ID header from the application with the identifier of the current device in order to save the

session on it.

Tip: The ID of the user’s current device can be obtained from маркера идентификации (page 309).

Returns If the call is successful, the code is HTTP 204 No Content.

Attention: Resetting sessions will invalidate previously received access tokens and refresh tokens of the

current user.

Request examples

Listing 71: User mode

POST /blitz/api/v3/users/c574a512-3704-4576-bc3a-3fe28b636e85/sessions/reset HTTP/
→˓1.1
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…
Authorization: Bearer wzb…Tw
IB-CI-UA-ID: {SHA256}rVWFmwgRKWeW_flH4CA4yuW7OhKZ32Da94m0kzwWsVs

Listing 72: System service call mode

POST /blitz/api/v3/users/c574a512-3704-4576-bc3a-3fe28b636e85/sessions/reset HTTP/
→˓1.1
Content-Type: application/json
Authorization: Bearer qwa…Ez

3.4. User management API 390

Blitz Identity Provider, version 5.23

Security questions

Checking for a question

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/secQsn

Checking whether the user has a security question.

Required permissions: blitz_api_usec or blitz_api_sys_usec.

Returns

• If the security question is asked ‐ the text of the security question.

• If the security question is not asked ‐ 404 Not Found.

Example

Request

GET /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/secQsn HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

{
"question": "Как звали вашего первого питомца"

}

Checking the answer

Method POST https://login.company.com/blitz/api/v3/users/{subjectId}/secQsn/
check

Checking the correctness of the answer to the security question.

Required permissions: blitz_api_usec or blitz_api_sys_usec.

Request body A security question (question) and the answer to it (answer).

Returns

• In case of successful verification of the question and response ‐ 204 No Content.

• Otherwise ‐ 400 Bad request.

Example

Request

POST /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/secQsn/check HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…

(continues on next page)

3.4. User management API 391

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"question": "Как звали вашего первого питомца",
"answer": "Тигр"

}

Error

Listing 73: The security question did not match

{
"type": "process_error",
"error": "wrong_security_answer",
"desc": "security question not match"

}

Listing 74: The answer to the security question did not match

{
"type": "process_error",
"error": "wrong_security_answer",
"desc": "security answer not match"

}

Listing 75: The user’s security question is not set

{
"type": "process_error",
"error": "wrong_security_answer",
"desc": "security question not found"

}

Setting or changing a question

Method POST https://login.company.com/blitz/api/v3/users/{subjectId}/secQsn

Setting or changing the user’s security question.

Required permissions: blitz_api_sys_usec_chg or blitz_api_sys_usec_chg.

Request body A security question (question) and the answer to it (answer).

Returns In case of successful setting of the security question ‐ 204 No Content.

Listing 76: Request example

POST /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/secQsn HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Content-Type: application/json
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…

{
"question": "Как звали вашего первого питомца",
"answer": "Тигр"

}

3.4. User management API 392

Blitz Identity Provider, version 5.23

Deleting a question

Method DELETE https://login.company.com/blitz/api/v3/users/{subjectId}/
secQsn

Deleting the security question from the user’s account.

Required permissions: blitz_api_usec_chg``or ``blitz_api_sys_usec_chg.

Returns If successful ‐ 204 No Content.

Listing 77: Request example

DELETE /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/secQsn HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)…

Permissions issued by the user

List of permissions

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/acls

Getting a list of permissions issued by the user.

Required permissions: blitz_api_usec or blitz_api_sys_usec.

Returns JSON containing a list of permissions granted by the user.

Example

Request

GET /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/acls HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

[
{

"id": "d2580c98 e584 4aad a591 97a8cf45cd2a_app1",
"updated": 1552896932780,
"client_id": "app1",
"scopes": [

"openid",
"profile",

]
}

]

3.4. User management API 393

Blitz Identity Provider, version 5.23

Revocation of permission

Method DELETE https://login.company.com/blitz/api/v3/users/{subjectId}/acls/
{acl_id}

Revocation of the issued permission.

Required permissions: blitz_api_usec_chg or blitz_api_sys_usec_chg.

URL parameters The received (page 393) identifier (id) of the permission is passed as the“acl_id“.

Headers In user mode, headers with the user’s IP address and User-Agentmust be passed.

Example

Listing 78: Request

DELETE /blitz/api/v3/users/d25..2a/acls/d25..2a_app1 HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz

Mobile apps

List of mobile apps

Method GET https://login.company.com/blitz/api/v3/users/{subjectId}/apps

Getting a list of linked mobile apps.

Required permissions: blitz_api_uapps or blitz_api_sys_uapps.

Returns JSON, containing a list of linked mobile apps.

Example

Request

GET /blitz/api/v3/users/d2580c98‑e584‑4aad‑a591‑97a8cf45cd2a/apps HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

[
{

"id": "dyn~test_app~afae0cab-2649-482d-9832-5f73816afb59",
"name": {

"_default_": "Тестовое приложение (test_app)"
},
"availableScopes": [

"openid",
"profile"

],
"softwareId": "test_app"

}
]

3.4. User management API 394

Blitz Identity Provider, version 5.23

Unlinking from a mobile app account

DELETE https://login.company.com/blitz/api/v3/users/{subjectId}/apps/
{app_id}

Revocation of the issued permission.

Required permissions: blitz_api_uapps_chg or blitz_api_sys_uapps_chg.

URL parameters The received (page 394) identifier (id) of the application linking is passed as the app_id.

Headers In user mode, headers with the user’s IP address and User-Agentmust be passed.

Example

Listing 79: Request

DELETE /blitz/api/v3/users/d2580c98-e584-4aad-a591-97a8cf45cd2a/apps/d2580c98-e584-
→˓4aad-a591-97a8cf45cd2a_app1 HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
X-Forwarded-For: 200.200.100.100
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)...

Deleting an account

Method DELETE https://login.company.com/blitz/api/v2/users/{subjectId}?
instanceId={instanceId}

Deleting the user account.

The subjectId contains the identifier of the account to be deleted, and the instanceId parameter contains

a link to the account to be deleted. To find out the value of instanceId for the user, you must first call the GET

service for obtaining attributes (page 357) of the user.

Example

Listing 80: Request

DELETE /blitz/api/v2/users/d..2a?instanceId=M…U HTTP/1.1
Authorization: Basic YXBwX2lkOmFwcF9zZWNyZXQ=

3.4.3 User groups

Attention: To call services, the system must obtain an access token to system permission (page 340)

blitz_groups and include it in all called services.

Groups in Blitz Identity Provider are described by the following attributes:

• id is the ID of the group in Blitz Identity Provider;

• name is the name of the user group.

3.4. User management API 395

Blitz Identity Provider, version 5.23

Getting group attributes by id

Method GET https://login.company.com/blitz/api/v2/grps/{id}

Getting the attributes of the group, if the id of the group is known.

URL parameters

• profile is the name of the profile of user groups (for example, orgs);

• expand is the value true, indicating that it is necessary to return all the attributes of the group.

Example

Request

GET /blitz/api/v2/grps/14339e8e-a665-4556-92f1-5c348eff6696?profile=orgs HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

{
"instanceId": "Mzg…nU",
"id": "14339e8e-a665-4556-92f1-5c348eff6696",
"OGRN": "1234567890329",
"INN": "7743151614",
"name": "ООО Тестовая компания",
"profile": "orgs"

}

Search for a group by attribute

Method GET https://login.company.com/blitz/api/v2/grps

Search for a group by attribute and getting all its attributes if the id of the group is unknown.

URL parameters

• profile is the name of the user groups profile;

• rql is a search query for group attributes in the format Resource Query Language87 (RQL).

Operations:

– and ‐ simultaneous execution of search conditions;

– or – alternative fulfillment of search conditions (for example, search by different attributes);

– eq – checking the equality condition;

– limit – a limit on the number of records to be returned.

• expand (optional parameter):

– true: include group attributes in the received response;

– false: return only the IDs of the found groups.

Returns JSON, containing a list of groups that meet the specified search conditions, indicating their identifier

(id), as well as the values of the other attributes of the groups (in the case of expand=true).

87 https://github.com/kriszyp/rql

3.4. User management API 396

https://github.com/kriszyp/rql

Blitz Identity Provider, version 5.23

Example

Request

Listing 81: Search for a group by PSRN or TIN

GET /blitz/api/v2/grps?profile=orgs&expand=true&rql=or(eq(OGRN,
→˓string:1230123456789),eq(INN,string:7743151614)) HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

[
{

"instanceId": "Mzg5L…nU",
"id": "14339e8e-a665-4556-92f1-5c348eff6696",
"OGRN": "1234567890329",
"INN": "7743151614",
"name": "ООО Тестовая компания",
"profile": "orgs"

}
]

Creating a group

Method POST https://login.company.com/blitz/api/v2/grps

Creating a user group.

Request body

• profile is the name of the user groups profile;

• id is the unique identifier of the group;

• the rest of the group’s attributes and their values.

Example

Request

POST /blitz/api/v2/grps HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Content-Type: application/json

{
"id":"95339e8e-a665-4556-92f1-5c348eff6696",
"OGRN":"9876543210321",
"INN":"5012345678",
"name":"ООО Тестовая компания 2",
"profile":"orgs"

}

3.4. User management API 397

Blitz Identity Provider, version 5.23

Response

{
"instanceId": "b3Jnc…dQ",
"name": "ООО Тестовая компания 2",
"OGRN": "9876543210321",
"id": "95339e8e-a665-4556-92f1-5c348eff6696",
"profile": "orgs",
"INN": "5012345678"

}

Changing group attributes

Method POST https://login.company.com/blitz/api/v2/grps/{id}?profile=orgs

Changing group attributes.

Request body New set of attributes:

• profile – the name of the group profile (must be passed both as part of the URL and in the request

body);

• id – group identifier;

• the rest of the group’s attributes and their values.

Example

Request

POST /blitz/api/v2/grps/5f7b0580-cd2e-4146-8fc5-6eb5a95c7b42?profile=orgs HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Content-Type: application/json

{
"id": "5f7b0580-cd2e-4146-8fc5-6eb5a95c7b42",
"OGRN": "1147746651733",
"INN": "7715434658",
"name": "Новое название",
"profile": "orgs"

}

Response

{
"instanceId": "Mzg5L…nU",
"id": "5f7b0580-cd2e-4146-8fc5-6eb5a95c7b42",
"OGRN": "1147746651733",
"INN": "7715434658",
"name": "Новое название",
"profile": "orgs"

}

3.4. User management API 398

Blitz Identity Provider, version 5.23

Error

Listing 82: The organization does not exist

{
"errors": [

{
"code": "group_not_found",
"desc": "Group with '95339e8e-…97' id not found in '389-ds' LDAP group␣

→˓store",
"params": {}

}
]

}

Deleting a group

Method DELETE https://login.company.com/blitz/api/v2/grps/{id}?profile=orgs

Deleting a group.

Example

Listing 83: Request

DELETE /blitz/api/v2/grps/5f7b0580-cd2e-4146-8fc5-6eb5a95c7b42?profile=orgs HTTP/1.
→˓1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz

Getting a list of users in a group

Method GET https://login.company.com/blitz/api/v2/grps/{id}/members

Getting a list of users from a group.

URL parameters

• profile is the name of the user groups profile;

• expand (optional parameter):

– true: include the user’s full name in the received response;

– false: return only user IDs.

Example

Request

Listing 84: expand=false

GET /blitz/api/v2/grps/14339e8e-a665-4556-92f1-5c348eff6696/members?profile=orgs&
→˓expand=false HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

3.4. User management API 399

Blitz Identity Provider, version 5.23

Listing 85: expand=true

GET /blitz/api/v2/grps/14339e8e-a665-4556-92f1-5c348eff6696/members?profile=orgs&
→˓expand=true HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Cache-Control: no-cache

Response

Listing 86: expand=false

[
{

"instanceId": "Mzg5L…J1",
"subjectId": "d434b7d4-9816-460a-83aa-0a994226cbe7"

},
{

"instanceId": "Mzg5L…J1",
"subjectId": "2cafa5f4-bc84-4f6f-91aa-080da47975f0"

}
]

Listing 87: expand=true

[
{

"instanceId": "Mzg5L…J1",
"family_name": "Иванов",
"middle_name": "Иванович",
"given_name": "Иван",
"subjectId": "d434b7d4-9816-460a-83aa-0a994226cbe7"

},
{

"instanceId": "Mzg5L…J1",
"family_name": "Сергеев",
"middle_name": "Сергеевич",
"given_name": "Сергей",
"subjectId": "2cafa5f4-bc84-4f6f-91aa-080da47975f0"

}
]

3.4. User management API 400

Blitz Identity Provider, version 5.23

Adding users

Method POST https://login.company.com/blitz/api/v2/grps/{id}/members/add?
profile=orgs

Adding users to a group.

Request body A list of users to be added to the group with their IDs (sub) in the subjectId attribute.

Request

POST /blitz/api/v2/grps/5f7b0580-cd2e-4146-8fc5-6eb5a95c7b42/members/add?
→˓profile=orgs HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Content-Type: application/json

[
{

"subjectId": "45ff69f2-6c40-418f-a21d-cbe6f07b88c9"
},
{

"subjectId": "cc8c4589-b2f8-40b8-b351-36d643808943"
}

]

Response

[
{

"instanceId": "Mzg5L…J1",
"storeId": "tam",
"subjectId": "45ff69f2-6c40-418f-a21d-cbe6f07b88c9"

},
{

"instanceId": "Nzg5L…J1",
"storeId": "tam",
"subjectId": "cc8c4589-b2f8-40b8-b351-36d643808943"

}
]

Error

Listing 88: Attempt to add a non‐existent user

{
"errors": [

{
"code": "user_not_found",
"desc": "User with subjectId 'd2580c98-e584-4aad-a591-97a8cf45cd2q'␣

→˓not found",
"params": {}

}
]

}

3.4. User management API 401

Blitz Identity Provider, version 5.23

Listing 89: An attempt to add a user who is already in the group

{
"errors": [

{
"code": "some_members_already_in_group",
"desc": "Some of adding members are already included in group",
"params": {}

}
]

}

Removing users

Method POST https://login.company.com/blitz/api/v2/grps/{id}/members/rm?
profile=orgs

Removing users from the group.

Request body A list of trusted persons excluded from the organization, indicating their identifiers (sub) in the

subjectId attribute.

Request

POST /blitz/api/v2/grps/5f7b0580-cd2e-4146-8fc5-6eb5a95c7b42/members/rm?
→˓profile=orgs HTTP/1.1
Authorization: Bearer cNwIXatB0wk5ZHO0xG5kxuuLubesWcb_yPPqLOFWDuwzMDc0Nz
Content-Type: application/json

[
{

"subjectId": "d2580c98-e584-4aad-a591-97a8cf45cd2a"
}

]

Response

[
{

"instanceId": "Mzg5L…J1",
"storeId": "389-ds",
"subjectId": "d2580c98-e584-4aad-a591-97a8cf45cd2a"

}
]

3.4. User management API 402

Blitz Identity Provider, version 5.23

Error

Listing 90: An attempt to delete a user from the group who is no longer

in it

{
"errors": [

{
"code": "some_members_not_in_group",
"desc": "Some of removing members are not included in group",
"params": {}

}
]

}

Listing 91: Attempt to delete a non‐existent user

{
"errors": [

{
"code": "user_not_found",
"desc": "User with subjectId 'd2580c98-e584-4aad-a591-97a8cf45cd2b'␣

→˓not found",
"params": {}

}
]

}

3.4.4 Access rights

Attention: To make requests for viewing, assigning, revoking access rights, the application must receive an

access token with the system permission blitz_rights_full_access.

Tip: To view the access rights of a user where he is a subject, you can also use an access token with the user

permission blitz_user_rights.

The access right is assigned from the access subject to the access object.

Access subjects:

• users,

• applications (prefix its).

Access objects:

• users,

• user groups (prefix grps),

• applications (prefix its).

3.4. User management API 403

Blitz Identity Provider, version 5.23

List of user rights

Method GET https://login.company.com/blitz/api/v3/rights/of/<sub>

Obtaining access rights by the access subject who is the user.

Examples

Request

GET /blitz/api/v3/rights/of/BIP-1SEQ41A HTTP/1.1
Authorization: Bearer cNwIX…Nz

Response

Listing 92: The user BIP-1SEQ41A has the right ORG_ADMIN to the

user group 1147746651733, the right APP_ADMIN to the applica‐

tion test_app2, the right change_password to the user account

BIP-3SGR7TA

{
"grps|1147746651733|orgs": {

"ORG_ADMIN": [
"set_from_api",
"another_one_tag"

]
},
"its|test_app2": {

"APP_ADMIN": [
"set_from_api"

]
},
"BIP-3SGR7TA": {

"change_password": [
"parent"

]
}

}

List of application rights

Method GET https://login.company.com/blitz/api/v3/rights/of/its/<app_id>

Obtaining access rights by the access subject that is the application.

3.4. User management API 404

Blitz Identity Provider, version 5.23

Examples

Request

GET /blitz/api/v3/rights/of/its/test_app HTTP/1.1
Authorization: Bearer cNwIX…Nz

Response

Listing 93: The application test_app has the right SYS_MON to

the application test_app2, the right change_password to the

user account BIP‑3SGR7TA, the right ORG_ADMIN to the user group

1147746651733

{
"its|test_app2": {

"SYS_MON": [
"set_from_api"

]
},
"BIP-3SGR7TA": {

"change_password": [
"set_from_api"

]
},
"grps|1147746651733|orgs": {

"ORG_ADMIN": [
"set_from_api"

]
}

}

Rights in relation to the user

Method GET https://login.company.com/blitz/api/v3/rights/on/<sub>

Obtaining access rights for an access object that is a user.

Examples

Request

GET /blitz/api/v3/rights/on/BIP-3SGR7TA HTTP/1.1
Authorization: Bearer cNwIX…Nz

3.4. User management API 405

Blitz Identity Provider, version 5.23

Response

Listing 94: The user BIP‑1SEQ41A and the application test_app
have the right change_password for the account BIP-3SGR7TA

{
"BIP 1SEQ41A": [

"change_password"
],
"its|test_app": [

"change_password"
]

}

Rights in relation to a group of users

Method GET https://login.company.com/blitz/api/v3/rights/on/grps/<grp_id>?
objectExt=<profile>

Obtaining access rights for an access object that is a group.

Examples

Request

GET /blitz/api/v3/rights/on/grps/1147746651733?objectExt=orgs HTTP/1.1
Authorization: Bearer cNwIX…Nz

Response

Listing 95: The user BIP‑1SEQ41A, and the application

test_app has the right ORG_ADMIN for the account of the group

1147746651733 from the profile orgs‘

{
"BIP 1SEQ41A": [

"ORG_ADMIN"
],
"its|test_app": [

"ORG_ADMIN"
]

}

Rights in relation to the application

Method GET https://login.company.com/blitz/api/v3/rights/on/its/<app_id>

Obtaining access rights for an access object that is an application.

3.4. User management API 406

Blitz Identity Provider, version 5.23

Examples

Request

GET /blitz/api/v3/rights/on/its/test_app2 HTTP/1.1
Authorization: Bearer cNwIX…Nz

Response

Listing 96: The user BIP‑1SEQ41A has the APP_ADMIN right to the

test_app2 application account, and the test_app application has

the SYS_MON right

{
"BIP 1SEQ41A": [

"APP_ADMIN"
],
"its|test_app": [

"SYS_MON"
]

}

Error

Listing 97: If the access token is expired, the service will return the error

HTTP 401 Unauthorized and JSON

{
"type": "security_error",
"error": "bad_access_token",
"desc": "expired_access_token"

}

Assignment of rights

Method PUT https://login.company.com/blitz/api/v3/rights

Assigning access rights.

Request body

• subject is the identifier of the subject to whom the right is assigned (user or application identifier);

• subjectType is the type of the subject. The parameter is specified only if the right is assigned to the

application. In this case, the value its is used;

• object is the identifier of the object to which the right is assigned (the identifier of a user, user group, or

application);

• objectType is the type of the object. The parameter is specified only if the right is assigned to a user

group (value grps) or to an application (value its);

• rights is an array with a list of assigned rights to the subject on the object;

• tags is an array with a list of tags of assigned rights.

Returns

• In case of successful assignment of access rights ‐ HTTP 204 No Content.

3.4. User management API 407

Blitz Identity Provider, version 5.23

• If the access token is expired ‐ HTTP 401 Unauthorized.

• If the subject or object does not exist ‐ HTTP 400 Bad Request

Examples

Request

Listing 98: Assigning access rights to a user to another user

PUT /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "BIP-1SEQ41A",
"object": "BIP-3SGR7TA",
"rights": ["change_password"],
"tags": ["set_from_api"]

}

Listing 99: Assigning user access rights to a group

PUT /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "BIP-1SEQ41A",
"object": "1147746651733",
"objectType": "grps",
"rights": ["ORG_ADMIN"],
"tags": ["set_from_api"]

}

Listing 100: Assigning user access rights to an application

PUT /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "BIP-1SEQ41A",
"object": "test_app2",
"objectType": "its",
"rights": ["APP_ADMIN"],
"tags": ["set_from_api"]

}

Listing 101: Assigning access rights to an application to a user

PUT /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "test_app",
"subjectType": "its",

(continues on next page)

3.4. User management API 408

Blitz Identity Provider, version 5.23

(continued from previous page)

"object": "BIP-3SGR7TA",
"rights": ["change_password"],
"tags": ["set_from_api"]

}

Listing 102: Assigning access rights to an application for a group

PUT /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "test_app",
"subjectType": "its",
"object": "1147746651733",
"objectType": "grps",
"rights": ["ORG_ADMIN"],
"tags": ["set_from_api"]

}

Listing 103: Assigning access rights to an application to another applica‐

tion

PUT /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "test_app",
"subjectType": "its",
"object": "test_app2",
"objectType": "its",
"rights": ["SYS_MON"],
"tags": ["set_from_api"]

}

Error

Listing 104: The access token has expired

{
"type": "security_error",
"error": "bad_access_token",
"desc": "expired_access_token"

}

Listing 105: The assigned right does not exist

{
"type": "process_error",
"error": "unknown_right",
"desc": "The specified right is unknown",
"params": {

"right": "change_password1"
}

}

3.4. User management API 409

Blitz Identity Provider, version 5.23

Listing 106: The user specified as the subject or object does not exist

{
"type": "process_error",
"error": "unknown_user",
"desc": "The specified user is unknown",
"params": {

"userId": "ivanov1"
}

}

Listing 107: The group specified as an object does not exist

{
"type": "process_error",
"error": "unknown_group",
"desc": "The specified group is unknown",
"params": {

"grpId": "1147746651734"
}

}

Listing 108: The specified application subject or object does not exist

{
"type": "process_error",
"error": "unknown_rp",
"desc": "The specified relying party is unknown",
"params": {

"rpId": "test_app3"
}

}

Revocation of rights

Method DELETE https://login.company.com/blitz/api/v3/rights

Revocation of access rights.

Request body

• subject is the identifier of the subject whose right is being revoked (user or application ID);

• subjectType is the type of the subject. The parameter is specified only in case of revocation of the

application’s rights. In this case, the value its is used;

• object is the identifier of the object to which the right is being revoked (the identifier of a user, user

group, or application);

• objectType is the type of the object. The parameter is specified only in case of revocation of the right

to a user group (value“grps“) or to an application (value its);

• rights is an array with a list of revoked rights of the subject to the object;

• tags is an array with a list of tags of revoked rights.

Warning: If an access right has been assigned to an access subject for an access object with multiple

tags, then all tags must also be specified to revoke the access right. If revocation of access rights is

not called with full indication of tags, then only the revoked tags will be deleted during revocation,

3.4. User management API 410

Blitz Identity Provider, version 5.23

and the access right of the access subject to the access object will remain as long as at least one of

the tags remains.

Returns

• In case of successful revocation of the access right, the service will return HTTP 204 No Content.

• If the access token is expired ‐ HTTP 401 Unauthorized.

• If the revoked right, subject or object does not exist ‐ HTTP 400 Bad Request

Examples

Request

Listing 109: Revoking a user’s access rights to another user

DELETE /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "BIP-1SEQ41A",
"object": "BIP-3SGR7TA",
"rights": ["change_password"],
"tags": ["set_from_api"]

}

Listing 110: Revoking a user’s access rights to a group

DELETE /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "BIP-1SEQ41A",
"object": "1147746651733",
"objectType": "grps",
"rights": ["ORG_ADMIN"],
"tags": ["set_from_api"]

}

Listing 111: Revoking the user’s access rights to the application

DELETE /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "BIP-1SEQ41A",
"object": "test_app2",
"objectType": "its",
"rights": ["APP_ADMIN"],
"tags": ["set_from_api"]

}

3.4. User management API 411

Blitz Identity Provider, version 5.23

Listing 112: Revoking the application’s access rights to the user

DELETE /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "test_app",
"subjectType": "its",
"object": "BIP-3SGR7TA",
"rights": ["change_password"],
"tags": ["set_from_api"]

}

Listing 113: Revoking the application’s access rights to the group

DELETE /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "test_app",
"subjectType": "its",
"object": "1147746651733",
"objectType": "grps",
"rights": ["ORG_ADMIN"],
"tags": ["set_from_api"]

}

Listing 114: Revoking the application’s access rights to another applica‐

tion

DELETE /blitz/api/v3/rights HTTP/1.1
Authorization: Bearer cNwIXNz
Content-Type: application/json

{
"subject": "test_app",
"subjectType": "its",
"object": "test_app2",
"objectType": "its",
"rights": ["SYS_MON"],
"tags": ["set_from_api"]

}

Response

Listing 115: The access token has expired

{
"type": "security_error",
"error": "bad_access_token",
"desc": "expired_access_token"

}

3.4. User management API 412

Blitz Identity Provider, version 5.23

Listing 116: The revoked right does not exist

{
"type": "process_error",
"error": "unknown_right",
"desc": "The specified right is unknown",
"params": {

"right": "change_password1"
}

}

Listing 117: The user specified as the subject or object does not exist

{
"type": "process_error",
"error": "unknown_user",
"desc": "The specified user is unknown",
"params": {

"userId": "ivanov1"
}

}

Listing 118: The group specified as an object does not exist

{
"type": "process_error",
"error": "unknown_group",
"desc": "The specified group is unknown",
"params": {

"grpId": "1147746651734"
}

}

Listing 119: The specified application subject or object does not exist

{
"type": "process_error",
"error": "unknown_rp",
"desc": "The specified relying party is unknown",
"params": {

"rpId": "test_app3"
}

}

The rights of the master user in relation to the slave

Method POST https://login.company.com/blitz/api/v2/users/rights/change

Assigning and revoking the rights of the master user in relation to the slave user.

Attention: A revocation request can be executed by an application not only using a user access token obtained

for permission named blitz_user_rights, but also using a system access token obtained for permission

named blitz_rm_rights. In this case, the revocation request may include the“subject“ of any users (to

revoke a user’s rights, it will not be necessary for this particular user to log in and receive an access token –

the system can revoke the rights of any user).

3.4. User management API 413

Blitz Identity Provider, version 5.23

Headers A header with a permission access token named blitz_user_rights received by the lead user

account should be added to the request.

Request body

Assignment of rights

A completed update block with a list of rights that should be added as a result of the operation.

Each right is described by the parameters:

• subject is the identifier (sub) of the lead user account;

• object is the identifier (sub) of the slave user account;

• rights is a list of rights in the form of an array that the account of the lead user receives in relation to the

account of the slave user. For example, for the right to change the account password, the change_pass-
word right must be specified (password change);

• tags is a list of tags indicating the reasons for which this user received rights.

Revocation of rights

A completed delete block with a list of rights that should be revoked as a result of the operation.

Each right is described by the parameters:

• subject is the identifier (sub) of the lead user account;

• object is the identifier (sub) of the slave user account;

• rights is a list of rights in the form of an array that are revoked from the master account in relation to

the slave account;

• tags is a list of tags indicating the reasons for which this user received rights.

If the rights are not assigned or revoked during the execution of the request, then either an empty update block
or an empty delete block must be present in the request body, respectively. Several assignable/revocable

rights can be specified in a single request, but only the user to whom the access token used to call the service

was received must be specified as the subject (subject).

Examples

Request

Listing 120: Assignment of rights

POST /blitz/api/v2/users/rights/change HTTP/1.1
Authorization: Bearer cNwIXTg
Content-Type: application/json

{
"update":[

{
"subject":"6561d0d9-5583-4bb5-a681-b591358e5fcd",
"object":"5cffd68f-2cb8-4f7a-b0f3-9fa69a1fbbcd",
"rights":[

"change_password"
],
"tags":[

"parent"
]

(continues on next page)

3.4. User management API 414

Blitz Identity Provider, version 5.23

(continued from previous page)

},
{

"subject":"6561d0d9-5583-4bb5-a681-b591358e5fcd",
"object":"b855957d-bf24-48d4-bb63-cce4f5064590d",
"rights":[

"change_password"
],
"tags":[

"parent"
]

}
],
"delete":[
]

}

Listing 121: Revocation of rights

POST /blitz/api/v2/users/rights/change HTTP/1.1
Authorization: Bearer cNwIXTg
Content-Type: application/json

{
"update":[
],
"delete":[

{
"subject":"b855957d-bf24-48d4-bb63-cce4f5064590d",
"object":"5cffd68f-2cb8-4f7a-b0f3-9fa69a1fbbcd",
"rights":[

"change_password"
],
"tags":[

"parent"
]

}
]

}

Error

Listing 122: In case of an error, the request is rejected in its entirety and

a list of errors is returned

{
"errors" : [

{
"code" : "validation_error",
"params" : {},
"desc" : "(For subject 'dea75b73-a2ba-4b60-a41c-bb640968826b') Incorrect␣

→˓right '' to object '5cffd68f-2cb8-4f7a-b0f3-9fa69a1fbbcd'"
},
{

"params" : {},
"code" : "validation_error",
"desc" : "(For subject 'dea75b73-a2ba-4b60-a41c-bb640968826b') Incorrect␣

→˓tag '' for right 'write' to object '5cffd68f-2cb8-4f7a-b0f3-9fa69a1fbbcd'"
},

(continues on next page)

3.4. User management API 415

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"desc" : "(For subject 'dea75b73-a2ba-4b60-a41c-bb640968826b') Incorrect␣

→˓object ''",
"code" : "validation_error",
"params" : {}

},
{

"desc" : "Incorrect subject ''",
"code" : "validation_error",
"params" : {}

}
]

}

3.5 Advanced features

3.5.1 Additional authentication method

Blitz Identity Provider allows you to connect your own developed authentication method. To do this, the system

acting as a provider of such an authentication method must:

• provide an authentication request handler;

• send the authentication result to Blitz Identity Provider;

• provide the authentication method applicability verification method Optional.

In Blitz Identity Provider, the developed authentication method must be registered as an external authentication

method (page 108).

Request handler service

The interaction of Blitz Identity Provider with the authentication request handler service is performed as follows:

1. The handler service is a URL for receiving HTTP requests from Blitz Identity Provider. When requesting

authentication, Blitz Identity Provider will make a POST request to this address.

In the request body, Blitz Identity Provider will transmit the following data in JSON format:

• request ID (id);

• statements characterizing the user (claims) are optional, only when called as a second factor;

• the ID of the system that requested the login (rpId);

• authentication context identifier (loginContextId);

• request data (request), which includes headers (headers), the user’s IP address

(remoteAddress), the method address (uri), a list of cookie (cookies) and the user’s

User Agent (userAgent).

Listing 123: Example of the request body

{
"id": "a9692091-4613-41aa-91d2-9a71a3fc2e07",
"claims": {},
"rpId": "_blitz_profile",
"loginContextId": "4502aa51-f28c-4a64-951c-5ab1e77b1294",
"request": {
"headers": {},

(continues on next page)

3.5. Advanced features 416

Blitz Identity Provider, version 5.23

(continued from previous page)

"remoteAddress": "172.25.0.1",
"uri": "/blitz/login/methods2/outside_test",
"cookies": {},
"userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0)…"

}
}

2. Blitz Identity Provider request must be handled on the side of the external method provider . As a result,

the external method must return:

• If authentication is possible ‐ an HTTP response to be executed in the user’s browser, which, for exam‐

ple, contains the HTML page code or initiates a browser redirect to the required page of the external

method.

• An error if user authentication is impossible.

Blitz Identity Provider request handling requirements

HTTP response

• the response should include a cookie setup (on the shared Blitz Identity Provider and external method

domain);

• the cookie name must be pre‐registered in Blitz Identity Provider;

• the session ID generated by an external method must be used as the cookie value.

Listing 124: Example of an HTTP response with a redirect and cookie

setup

HTTP/1.1 302 Found
Location: https://login.company.com/blitz/begin?id=a9692091-4613-41aa-91d2
Set-Cookie: Bmr=YTk2OTIwOTEtNDYxMy00MWFhLTkxZDItOWE3MWEzZmMyZTA3;␣
→˓Domain=company.com; path=/blitz; Secure; HttpOnly

Important: When passing the external method, the provider must verify that the cookie value for this

request has not been changed.

Error

Recommended return codes:

HTTP response

code

Response value Description of the response

200 OK Initiating an external method by displaying the

page content

302 Found Initiating an external method through a redirect

400 Bad Request Required request parameters are missing

500 Internal Server Er-
ror

Incoming request handling internal error

3.5. Advanced features 417

Blitz Identity Provider, version 5.23

Transmission of the authentication result

After passing the external method, the provider must perform the following actions:

1. The server part of the provider must call Blitz Identity Provider using the POST method at:

https://login.company.com/blitz/login/methods/outside/save?methodName=outside_
→˓{name}

In this request, name is the name of the external method assigned to it in Blitz Identity Provider during

registration.

Request body

Successful authentication

If authentication is successful, the request body must specify:

• request ID (id);

• extSessionId is the session ID generated by an external method. The ID must match the value

passed in the original cookie request;

• claims is a list of statements that need to enrich the user’s session. The list may be empty;

• subjectId is the user ID (only for the first factor; when calling an external method, the user ID

cannot be passed as the second factor);

• loginContextId is the authentication context ID corresponding to the original request.

Listing 125: Request example

POST /blitz/login/methods/outside/save?methodName=outside_test HTTP/1.1
Content-Type: application/json

{
"id": "426b5139-e4f7-41e6-a206-9503de6f34dd",
"extSessionId": "YTk2OTIwOTEtNDYxMy00MWFhLTkxZDItOWE3MWEzZmMyZTA3",
"claims": {},
"loginContextId": "3ca4d1f0-654a-4665-be98-d105ab6ec35d",
"subjectId": "2db787c7-6e37-4018-abe9-2bea1011c047"

}

Authentication error

In case of an error, the request body must specify:

• id is the request ID;

• extSessionId is the session ID generated by an external method. The ID must match the value

passed in the original cookie request;

• error is error code;

• msg is a text description of the error (optional).

Listing 126: Request example

POST /blitz/login/methods/outside/save?methodName=outside_test HTTP/1.1
Content-Type: application/json

(continues on next page)

3.5. Advanced features 418

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"id": "426b5139-e4f7-41e6-a206-9503de6f34dd",
"extSessionId": "YTk2OTIwOTEtNDYxMy00MWFhLTkxZDItOWE3MWEzZmMyZTA3",
"error": "not_found",
"msg": "User not found"

}

If the authentication results are saved (both successful and unsuccessful), Blitz Identity Provider returns

the HTTP 200 OK response.

2. The browser part of the provider should ensure that the user is redirected back to Blitz Identity Provider.

To do this, you need to redirect the browser to:

https://login.company.com/blitz/login/methods/outside/callback?
→˓methodName=outside_{name}

In this request, name is the name of the external method assigned to it in Blitz Identity Provider during

registration.

Method verification service

The authenticationmethod applicability verification service is a URL for receivingHTTP requests fromBlitz Identity

Provider. Prior to the authentication request, Blitz Identity Provider will make a POST request to this address,

passing the same data in the body in JSON format as in the authentication request.

As a response, the external method should return JSON with the following attributes:

• request ID (id);

• the applicability verification result (result), which takes either true (the method is applicable) or

false (the method is not applicable) value;

• the authentication context ID (loginContextId) corresponding to the request.

If the service returns false as the applicability verification result, then Blitz Identity Provider will not execute

the authentication request for this user.

3.5.2 Invoking the auxiliary application at the moment of login

At themoment of logging in, Blitz Identity Provider can invoke an auxiliary application that will perform additional

operations (for example, show the user an information message or request data updating), after which it will

return the user to Blitz Identity Provider for subsequent logging into the target application.

From a technical point of view, the auxiliary application must perform the following actions:

• handle a request to open the auxiliary application,

• return the user to Blitz Identity Provider after handling is completed.

3.5. Advanced features 419

Blitz Identity Provider, version 5.23

Request to open the application

A request to invoke the auxiliary application is received as follows:

1. The auxiliary application is accessed by redirecting the user to the link provided by the application. The link

will contain the authorization code (code) as an option.

Listing 127: Example of a link to initiate a request

https://<app_hostname>/?lang=ru&theme=default&code=0Tj…qw

2. The applicationmust exchange the authorization code for an access token according to the OAuth 2.0 spec‐

ification. The access token will be used to obtain the session ID to return the user to Blitz Identity Provider,

as well as user data if necessary.

Example

Request

curl -k -d "grant_type=authorization_code&redirect_uri=https%3A%2F%2Fapp.
→˓company.com%2F&client_id=app&client_secret=EW…l0&code=0Tj…qw" -X POST https:/
→˓/login.company.com/blitz/oauth/te

Received access token

{
"access_token": "ey…J9.ey…n0.Wa…Pw",
"token_type": "Bearer",
"expires_in": 3600,
"scope": "profile"

}

Important: The auxiliary application must be pre‐registered in Blitz Identity Provider, taking into account

the following features:

• a predefined return URL must be specified, which should then be used to receive the token;

• the default permissions (scope) must be configured, they determine the amount of data received

by the auxiliary application.

Returning the user to Blitz Identity Provider

The user is returned to Blitz Identity Provider as follows:

1. After completing the necessary actions (for example, showing the user an informational message), the

auxiliary application should return the user to Blitz Identity Provider. To do this, you need to decode the

received access token, received in JWT format, and extract from it the statement with the user’s session

(sessionId).

Listing 128: Example of the decoded access_token body

{
"scope": "blitz_api_user blitz_api_user_chg blitz_api_usec_chg",
"jti": "kfP…jA",

(continues on next page)

3.5. Advanced features 420

Blitz Identity Provider, version 5.23

(continued from previous page)

"client_id": "app",
"exp": 1631026605,
"sessionId": "ce9f3109-ac79-46b4-b277-099ff1aa1ff0",
"iat": 1631023005,
"sub": "8b970179-e141-43b9-b9d5-25997be99261",
"aud": [

"app"
],
"crid": "u9th2LzMXZdwb3rRmI3Paw",
"iss": "https://login.company.com/blitz"

}

2. After decoding the access token, the auxiliary application must make a POST request to the URL of the

authentication completion handler Blitz Identity Provider /login/pipe/save/<sessionId>. The
request bodymay contain a set of statements (claims) to be added to the user’s session, or error information

(error).

Listing 129: Request example

curl -v --location --request POST 'https://login.company.com/blitz/login/pipe/
→˓save/ce9f3109-ac79-46b4-b277-099ff1aa1ff0' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic Z2…ww' \
--data-raw '{"claims":{"org_id":"12345678"}}'

3. If successful, Blitz Identity Provider will return HTTP 204 No Content. After receiving it, the auxiliary
application should return the user’s browser to the address /login/pipe/callback so that the user

completes logging in to the target application.

Listing 130: Example of a redirect link

https://login.company.com/blitz/login/pipe/callback

3.5.3 Administration API

You can administer Blitz Identity Provider using:

• admin console;

• configuration files;

• administrative REST services.

Administrative REST services in Blitz Identity Provider in the current version allow you to perform the following

actions:

• application registration;

• get application settings;

• change application settings;

• delete applications.

Administrative REST services are available at https://login.company.com/blitz/admin/api/v3/
...

To enable administrative services, settings must first be made on the web server used by Blitz Identity Provider.

It is not recommended to publish administrative REST services on the Internet.

An example of the location block in the nginx web server settings to enable the availability of administrative REST

services:

3.5. Advanced features 421

Blitz Identity Provider, version 5.23

location /blitz/admin/api {
proxy_intercept_errors off;
proxy_pass http://blitz-console/blitz/admin/api;

}

Access to administrative REST services is regulated using the permissions (scope) listed in the table:

Permissions (scope) for administrative REST APIs

No. Permission Name Description

1.
blitz_api_sys_app Permission to read appli‐

cation settings

To use the service

GET /blitz/admin/api/v3/app/
{appId}

2.
blitz_api_sys_app_chgPermission to make

changes to application

settings

To use the services:

PUT /blitz/admin/api/v3/app/
{appId}
POST /blitz/admin/api/v3/app/
{appId}
DELETE /blitz/admin/api/v3/
app/{appId}

To get an access token for system permission, the application must make a POST request to the URL to receive

the token (https://login.company.com/blitz/oauth/te). The request must contain the header

Authorizationwith the valueBasic {secret}, wheresecret isclient_id:client_secret (for
example, app:topsecret) in Base64 format.

Example of a header:

Authorization: Basic YWlzOm…XQ=

The request body must contain the following parameters:

• grant_type – takes the value client_credentials;

• scope is the requested system permission.

Request example:

POST blitz/oauth/te HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Basic ZG5ld…lg

grant_type=client_credentials&scope=blitz_api_sys_app+blitz_api_sys_app_chg

In response, the application will receive an access token (access_token), its lifetime (expires_in) and the
token type (token_type). Possible errors when calling /oauth/te correspond to RFC 674988.

Example of a response with successful execution of the request:

{
"access_token": "QFiJ9mPgERPuusd36mQvD4mfzYolH_CmuddAJ3YKTOI",
"expires_in": 3600,
"scope": "blitz_api_sys_app blitz_api_sys_app_chg",
"token_type": "Bearer"

}

88 https://tools.ietf.org/html/rfc6749#section‐5.2

3.5. Advanced features 422

https://tools.ietf.org/html/rfc6749#section-5.2

Blitz Identity Provider, version 5.23

It is recommended that the application caches the received access token for repeated use for a time slightly less

than the expires_in parameter, after which it receives a new access token for updating in the cache.

If the application tries to call the corresponding REST service with an expired access token, it will receive the error

HTTP 401 Unauthorized.

Getting application settings

To get the application settings by its identifier, you need to use the GET method to call the service at https://
login.company.com/blitz/admin/api/v3/app/{appId}.

Required permissions: blitz_api_sys_app.

As a result of executing the request, Blitz Identity Provider will return a JSON containing the application settings..

Request example:

GET /blitz/admin/api/v3/app/test-app HTTP/1.1
Authorization: Bearer cNw…Nz

Response example:

HTTP/2 200
…
content-type: application/json
etag: 96_1658847045000

{
"name":"…",
"tags": [

"tag1",
"tag2"

],
"domain":"…",
"startPageUrl":"…",
"oauth": {

"clientSecret":"…",
"redirectUriPrefixes":["…"],
"predefinedRedirectUri":"…",
"availableScopes":["…","…"],
"defaultScopes":["…"],
"enabled":true,
"autoConsent":true,
"idToken":{"claims":["…"]},
"accessTokenTtl":3600,
"defaultAccessType":"online",
"refreshTokenTtl":86400,
"dynReg":{

"isAllow":true,
"allowedPlainJsonClaims":["device_type"]

},
"pixyMandatory":true,
"deviceGrant": {

"userCodeFormat":"[0-9]{3,3}-[0-9]{3,3}-[0-9]{3,3}",
"userCodeTtl":120,
"verificationUrl":"…",
"useCompleteUri":true

},
"teAuthMethod":"client_secret_basic",
"grantTypes":["authorization_code","client_credentials"],
"responseTypes":["code"],
"extraClientSecret":"…",

(continues on next page)

3.5. Advanced features 423

Blitz Identity Provider, version 5.23

(continued from previous page)

"accessTokenFormat":"jwt",
"logout": {

"logoutAutoConsent":false,
"logoutUriPrefixes":["…"],
"predefinedLogoutUri":"…",
"frontchannelLogoutUri":"…",
"frontchannelLogoutSessionRequired":true,
"backchannelLogoutUri":"…"

}
},
"simple": {

"ssl":true,
"formSelector":"…",
"loginSelector":"…",
"logoutUrl":"…",
"postLogoutUrl":"…"

},
"rest": {

"Basic":{"pswd":"…"},
"TLS":[]

},
"theme":"default",
"saml": {

"spMetadata":"…",
"spAttributeFilterPolicy": {

"id":"test-app",
"attributeRules":[{"attr":"…","isPermitted":true}]

},
"saml2SSOProfile": {

"signAssertions":"always",
"encryptAssertions":"always",
"encryptNameIds":"always",
"includeAttributeStatement":true

}
}

}

The content of the response may differ depending on the settings set for the application and the configured

connection protocols. Thesaml, oauth, simple, andrest blocksmay bemissing if the appropriate protocols

for the application are not configured.

The service’s response contains the etag header. The value from this header should be used in the If-Match
header if you plan to call the application registration services, edit application settings, or delete the application

after receiving the application settings. Using etag Blitz Identity Provider checks that no other changes were

made to the configuration file on the server in parallel sessions (optimistic blocking) between the last receipt of

etag and calling the settings change operation with If-Match.

When using SAML, the spMetadata setting will contain a Base64URL encoded metadata file for the application

(Service Provider Metadata).

The names of the settings returned by the service correspond to the names in the configuration file blitz.
conf.

If the application settings for the transmitted appId are not found, the Blitz Identity Provider server returns the

error HTTP 404 Not found.

3.5. Advanced features 424

Blitz Identity Provider, version 5.23

Application registration

To register an application, you need to make a PUT request at https://login.company.com/blitz/
admin/api/v3/app/{appId}.

Required permissions: blitz_api_sys_app_chg.

The If-Match header can be (optionally) added to the request, containing the last etag value received from

the server.

The request body must contain the settings values of the registered application.

Request example:

PUT /blitz/admin/api/v3/app/test-app2 HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json
If-Match: 98_1658857264000

{
"name":"…",
"tags": [

"tag1",
"tag2"

],
"domain":"…",
"startPageUrl":"…",
"oauth": {

"clientSecret":"…",
"redirectUriPrefixes":["…"],
"predefinedRedirectUri":"…",
"availableScopes":["…","…"],
"defaultScopes":["…"],
"enabled":true,
"autoConsent":true,
"idToken":{"claims":["…"]},
"accessTokenTtl":3600,
"defaultAccessType":"online",
"refreshTokenTtl":86400,
"dynReg":{

"isAllow":true,
"allowedPlainJsonClaims":["device_type"]

},
"pixyMandatory":true,
"deviceGrant": {

"userCodeFormat":"[0-9]{3,3}-[0-9]{3,3}-[0-9]{3,3}",
"userCodeTtl":120,
"verificationUrl":"…",
"useCompleteUri":true

},
"teAuthMethod":"client_secret_basic",
"grantTypes":["authorization_code","client_credentials"],
"responseTypes":["code"],
"extraClientSecret":"…",
"accessTokenFormat":"jwt",
"logout": {

"logoutAutoConsent":false,
"logoutUriPrefixes":["…"],
"predefinedLogoutUri":"…",
"frontchannelLogoutUri":"…",
"frontchannelLogoutSessionRequired":true,
"backchannelLogoutUri":"…"

}

(continues on next page)

3.5. Advanced features 425

Blitz Identity Provider, version 5.23

(continued from previous page)

},
"simple": {

"ssl":true,
"formSelector":"…",
"loginSelector":"…",
"logoutUrl":"…",
"postLogoutUrl":"…"

},
"rest": {

"Basic":{"pswd":"…"},
"TLS":[]

},
"theme":"default",
"saml": {

"spMetadata":"…",
"spAttributeFilterPolicy": {

"id":"…",
"attributeRules":[{"attr":"…","isPermitted":true}]

},
"saml2SSOProfile": {

"signAssertions":"always",
"encryptAssertions":"always",
"encryptNameIds":"always",
"includeAttributeStatement":true

}
}

}

When registering an application running on SAML, you need to consider the following features:

• the contents of the application metadata encoded in the Base64URL format must be passed to spMeta-
data.

• in the id setting in the spAttributeFilterPolicy, you must pass the same id that is passed in the URL as the

appId.

If registration is successful, the server will return HTTP 200, the current application data and the current value
etag.

Response example:

HTTP/2 200
…
content-type: application/json
etag: 99_1658857631000

{
"id":"test-app2",
"name":"…",
…
"oauth": {

…
},
…

}

If, during application registration, it is found that the data in the configuration file on the server was changed

between receiving the etag and calling registration, the server will return a response with the code HTTP 412
Precondition Failed and the error body:

3.5. Advanced features 426

Blitz Identity Provider, version 5.23

{
"type":"process_error",
"error":"cas_mismatch",
"desc":"cas_mismatch"

}

If an error occurred during application registration, the server will return a response with the code HTTP 400
Bad Request with a description of the error.

Example of a response with a registration error:

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "json.error.mandatory.field",
"desc": "json.error.expected.array",
"pos": "oauth.redirectUriPrefixes"

},
…

]
}

Changing application settings

To change the application settings, you need to make a POST request to https://login.company.com/
blitz/admin/api/v3/app/{appId}.

Required permissions: blitz_api_sys_app_chg.

The If-Match header should be added to the request, containing the last etag value received from the server.

The request body must contain the new values of the application settings you want to change. You must send

the entire branch with the parameter to be changed. For example, if the parameter is at level #3, its parent

parameters at levels #1 and #2 must also be sent. To delete a parameter, the entire branch with the null value

for that parameter must be sent.

Example of changing an application tag:

POST /blitz/admin/api/v3/app/test-app HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json
If-Match: 98_1658857264000

{
"tags": [

"default",
"2F"

]
}

If the change is successful, the server will return HTTP 200, the current values of the application settings and a

new etag.

Response example:

HTTP/2 200
…

(continues on next page)

3.5. Advanced features 427

Blitz Identity Provider, version 5.23

(continued from previous page)

content-type: application/json
etag: 99_1658857631000

{
"name": "",
"tags": [

"default",
"2F"

],
"domain": "test.app1.ru",
"id": "app1",
"simple": {

"formSelector": "select",
"postLogoutUrl": "http://localhost",
"ssl": true,
"loginSelector": "select",
"js": "dyMw==",
"logoutUrl": "https://localhost"

},
"disabled": false

}

Example of deleting an application tags:

POST /blitz/admin/api/v3/app/test-app HTTP/1.1
Authorization: Bearer cNw…Nz
Content-Type: application/json
If-Match: 98_1658857264000

{
"tags": null

}

Response example:

HTTP/2 200
…
content-type: application/json
etag: 99_1658857631000

{
"name": "",
"domain": "test.app1.ru",
"id": "app1",
"simple": {

"formSelector": "select",
"postLogoutUrl": "http://localhost",
"ssl": true,
"loginSelector": "select",
"js": "dyMw==",
"logoutUrl": "https://localhost"

},
"disabled": false

}

If, when editing the application, it is found that the data in the configuration file on the server was changed

between receiving the etag and calling the edit, the server will return a response with the code HTTP 412
Precondition Failed and the error body:

3.5. Advanced features 428

Blitz Identity Provider, version 5.23

{
"type":"process_error",
"error":"cas_mismatch",
"desc":"cas_mismatch"

}

If an error occurred while editing the application that incorrect data was transmitted, the server will return a

response with the code HTTP 400 Bad Request with a description of the errors.

Example of an error response:

{
"type": "input_error",
"error": "wrong_values",
"errors": [

{
"type": "input_error",
"error": "json.error.mandatory.field",
"desc": "json.error.expected.array",
"pos": "oauth.redirectUriPrefixes"

},
…

]
}

Deleting an application

To delete an application, you must make a request using the DELETE method at https://login.company.
com/blitz/admin/api/v3/app/{appId}.

Required permissions: blitz_api_sys_app_chg.

The If-Match header should be added to the request, containing the last etag value received from the server.

Request example:

DELETE /blitz/admin/api/v3/app/test-app HTTP/1.1
Authorization: Bearer cNw…Nz
If-Match: 99_1658857631000

If the application is successfully deleted, the server returns HTTP 204.

If, when deleting the application, it is found that the data in the configuration file on the server was changed

between receiving the etag and calling the deletion, the server will return a response with the code HTTP 412
Precondition Failed and the error body:

{
"type":"process_error",
"error":"cas_mismatch",
"desc":"cas_mismatch"

}

3.5. Advanced features 429

Blitz Identity Provider, version 5.23

3.5.4 Invoking a third‐party user registration application

In Blitz Identity Provider, you can configure the use of a third‐party user registration application. In this case, Blitz

Identity Provider will be able to call the user registration application from the login page (when clicking on the

link Register) or as a result of the user’s first login through an external identification provider. At the same time,

the following features are available:

• If registration is started as a result of the first login through an external identification provider, then Blitz

Identity Provider will transfer the attributes received from the external identification provider to the regis‐

tration application. The application will be able to use them to pre‐fill out the registration form.

• If the user successfully completes the registration, he will be able to continue the login process. For exam‐

ple, you can provide an automatic login of a registered user to the application in the sameway as it happens

when using the registration application built into Blitz Identity Provider.

To connect to Blitz Identity Provider a third‐party registration application, it is necessary to support the services

on the side of the registration web application in accordance with the requirements described in the following

sections.

Registration Initiation Service

A third‐party registration application must provide an HTTP POST service to initiate registration.

Note: The address of the service is set in the Blitz Identity Provider settings (see Administration (page 9)).

The service must accept the following parameters (in the form of JSON):

• id – the ID of the registration application;

• entryPoint– information about the login point. The following values are possible:

– SOCIAL – registration is triggered due to the entry of a new user through an external identification

provider;

– WEB – the user initiated the registration on his own (selected “Register” on the login page).

• appId is the identifier of the application that the user originally wanted to log in to, as a result of which

the registration process started;

• expires – the expiration time of the registration application. Specified in Unix time, in seconds;

• source – the source of information about the user (in the case of obtaining information from an external

login provider). Contains the ID of the external login provider;

• a list of attributes obtained from an external identification provider. Attributes are passed from the account

binding settings of the corresponding external identity provider.

• hints – hints passed to the login form call. For example, the user’s login can be passed here, if the user

initiated self‐registration from the login form, which in turnwas openedwith thelogin_hint parameter;

• lang – the current language of the user interface on the login page.

Request example (when the user clicks “Register” on the login page):

POST /reg/url HTTP/1.1
Content-Type: application/json

{
"id":"6DXDHyyiZ2hByUN-sCRUEdvAoQun7WwQ",
"entryPoint":"WEB",
"appId":"portal",
"expires":1608129702,
"hints": {},

(continues on next page)

3.5. Advanced features 430

Blitz Identity Provider, version 5.23

(continued from previous page)

"attrs": {},
"lang": "ru"

}

In response, the registration initiation service must return either an HTTP response to be executed in the user’s

browser (for example, the HTML code of the page or initiate redirection of the user in the browser to the regis‐

tration page), or an error message.

Response example:

HTTP/1.1 302 Found
Location: https://www.company.ru/register/

As a result, the user will be redirected from Blitz Identity Provider to a third‐party registration application.

Registration completion service

When the user in the third‐party registration application has entered all the data necessary for account reg‐

istration, the third‐party registration application should call the Blitz Identity Provider service to complete the

registration of the user account. The service is called by the POST method at https://login.company.
com/blitz/reg/api/v1/users/{id}, where the ID of the registration request previously received from

Blitz Identity Provider is passed as the id in the URL of the service.

The following header should be added to the request, where secret is assigned to the application when regis‐

tering in Blitz Identity Provider client_id:rest_secret in Base64 format:

Authorization: Basic <secret>

Attention: The list of attributes is provided as a sample. The contents of the list must be adjusted depending

on the specific settingsmadeduring the implementationof Blitz Identity Provider. SeeAdministration (page 9).

The request body must contain the attributes of the account being registered:

• first_name is a surname;

• name is the name;

• middle_name is a middle name;

• phone_number is a mobile phone number in the form of a composite object with attributes:

– value is a phone number in the format (country code)XXXXXXXXXX;

– verified – indicates that the phone has been verified – true or false;

• email – an email address in the form of a composite object with attributes:

– value – email address;

– verified – indicates that the address has been verified – true or false;

• password is the password for the user account being created (must match the configured password pol‐

icy).

Request example (registration with confirmed email and phone number):

POST /blitz/reg/api/v1/users/6DXDHyyiZ2hByUN-sCRUEdvAoQun7WwQ HTTP/1.1
Authorization: Basic YXBwX2lkOmFwcF9zZWNyZXQ=
Content-Type: application/json

(continues on next page)

3.5. Advanced features 431

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"first_name":"Иванов",
"name":"Иван",
"middle_name":"Иванович",
"phone_number": {

"value": "79991234567",
"verified": true

},
"email": {

"value":"mail@example.com",
"verified": true

},
"password":"QWErty$123"

}

In response, Blitz Identity Provider, if registration is successful, will return JSON with the following data:

• subject is the ID of the registered user;

• origin is the link to which the user’s browser should be directed;

• cookies are cookies that need to be set when redirecting the user’s browser to a shared c Blitz Identity

Provider domain;

• instanceId, instructions – other process information that should be ignored.

Response example:

{
"instanceId": "amRiY2lkcG9zdGdyZXM6YzhjMGExYzEtYzdmYS00ZDg3LWFiYmMtZTNiYzg1YTk4

→˓",
"subject":"5cffd68f-2cb8-4f7a-b0f3-9fa69a1fbbcd",
"context":"6DXDHyyiZ2hByUN-sCRUEdvAoQun7WwQ",
"cookies": [{

"name": "css",
"value": "TSQA-AruOjUNphGZ984eLgzT_ROebNiBsjyjEg4n-nL-PdsiXqq"

}],
"origin": "/blitz/profile?",
"instructions": []

}

After redirecting the user’s browser registration by a third‐party application using the link specified in origin
and with the specified Blitz Identity Provider cookies will create a session and ensure that the user logs into

the application for which the user has registered an account.

3.5.5 Authentication API

As a standard, if necessary, to identify and authenticate the user, the website or mobile application interacts with

Blitz Identity Provider using any of the available protocols (see Selecting an interaction protocol (page 294)). At

the same time, the application does not directly authenticate. The application redirects the user to Blitz Identity

Provider to the login page. Next, Blitz Identity Provider independently offers the user various authentication

methods, interacts with the user during the login process.

In some cases, it may be desirable to provide the user with the opportunity to complete identification and au‐

thentication without being redirected to the Blitz Identity Provider login page. Such capabilities are limited

(not all login and login confirmation methods are available without redirection), and require a large amount

of improvements on the application side (since the application needs to support the processing of various

authentication‐related scenarios).

Blitz Identity Provider provides an HTTP API that allows you to embed user identification and authentication into

the application’s web page without redirecting the user to a separate login page. This HTTP API is designed for

3.5. Advanced features 432

Blitz Identity Provider, version 5.23

web applications. When using the API, a Web Single Sign‐On is provided, namely, when the user subsequently

logs in to another application connected to Blitz Identity Provider in the same web session, he will not be asked

to log in again.

Settings for using the API

The application must be registered in Blitz Identity Provider. The application in Blitz Identity Provider must be

assignedclient_id andclient_secret, and the application return URLmust be registered in Blitz Identity

Provider.

The interaction of the application page and Blitz Identity Provider is based on the execution of a series of AJAX

interactions. To enable such interaction, the following CORS (Cross-origin resource sharing) settings

must be made on the application’s web server and on the Blitz Identity Provider web server:

1. On the Blitz Identity Provider server, for the/blitz/oauth/ae handler, you need to configure the CORS
permission by adding the following HTTP Headers (you need to specify the origin for the PROD site and

the necessary origin for the required test environments):

"Access-Control-Allow-Origin" -> "https://{app-domain}",
"Access-Control-Allow-Credentials" -> "true"

In this header, {app-domain} is the application domain.

2. On the portal server, the following CORS permission must be configured for the callback handler (see Inter‐

action scheme (page 433)) of the response from Blitz Identity Provider (the permission is null, since after
the redirect the browser resets origin):

"Access-Control-Allow-Origin" -> null,
"Access-Control-Allow-Credentials" -> "true"

Interaction scheme

The HTTP authentication API allows you to:

• Check for an SSO session. If there is no SSO session, get a list of authentication methods available to the

user.

• Perform identification and authentication using a username and password.

• Perform identification and authentication using a login (phone) and a confirmation code sent by SMS.

• Perform identification and authentication using a QR code;

• Confirm the login using the confirmation code sent by SMS.

The figure below shows an interaction scheme when logging in with a username and password, followed by

confirmation of login using a confirmation code sent via SMS.

3.5. Advanced features 433

Blitz Identity Provider, version 5.23

The following figure shows the interaction scheme when logging in by phone and the confirmation code sent by

SMS.

The web application interacts with Blitz Identity Provider by executing a series of AJAX requests.

3.5. Advanced features 434

Blitz Identity Provider, version 5.23

Note: Requests must be made with the saving and transfer of cookies – you must use withCreden-
tials: true

The following sections describe the requests being called, possible responses, and recommendations for process‐

ing them. Examples of requests and responses are provided in the form of cURL calls.

Starting the login process

To start the login process, the applicationmust send an HTTPGET request to AJAX to Blitz Identity Provider (neces‐

sarily with withCredentials: true) to the usual Authorization Endpoint handler (/blitz/oauth/ae,
see Getting the authorization code (page 300)), adding the special parameter display=script. to the re‐

quest

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request GET 'https://login.company.com/blitz/oauth/ae?response_type=code&client_
→˓id=ais&scope=openid&state=…&display=script&redirect_uri=https%3A%2F%2Fapp.
→˓company.com%2Fre'

If an SSO session already exists, Blitz Identity Provider will automatically redirect the user to theredirect_uri
handler address, adding the authorization code and the state parameter to the request. Using the received

authorization code, the application will continue the standard OpenID Connect interaction to receive security

tokens and account data.

Example of a redirect response if the SSO session already exists:

…
< HTTP/2 302
…
< location: https://…?code=…&state=…
…

An example of a response if authentication is required:

{
"inquire":"choose_one",
"items":[

{
"inquire":"login_with_password"

},
{

"inquire":"request_auth_with_fed_point",
"fp":"esia:esia_1"

},
…
{

"inquire":"request_auth_with_fed_point",
"fp":"yandex:yandex_1"

},
{

"inquire":"login_to_send_sms"
},
{

"inquire":"show_qr_code",
"link":"https://…?code=dde087f0-8f4a-478e-886b-5354b0283362",
"expires":1660905165,
"logo":"https:/…"

}

(continues on next page)

3.5. Advanced features 435

Blitz Identity Provider, version 5.23

(continued from previous page)

]
}

If authentication is required, Blitz Identity Provider returns one of the possible instructions to the application:

• login_with_password – log in with your username and password;

• request_auth_with_fed_point – log in using an external identification provider (social network);

• login_to_send_sms – log in using your username and confirmation code sent via SMS;

• show_qr_code – display a QR code that allows you to log in.

If any of the authenticationmethods are not configured in Blitz Identity Provider or are unavailable for logging into

the requesting application (for example, as a result of the settings of the “login procedure” for the corresponding

application), then instructions on them will be missing in the service response.

Depending on the security modes included in Blitz Identity Provider, the login_with_password instruction

may contain additional parameters:

• If the CAPTCHA mode is configured in Blitz Identity Provider when logging in, then the instructions will

contain the captchaId parameter that the application needs to use for the CAPTCHA test:

{
"inquire": "choose_one",
"items": [

{
"inquire": "login_with_password",
"captchaId": "9cf48a75-6be1-4008-b34e-8906220c472f"

},
…

]
}

• If the password protection mode is configured in Blitz Identity Provider, which requires the application to

solve a long‐term computational task (Proof of Work), then the proofOfWork parameter will be in the

instructions:

{
"inquire": "choose_one",
"items": [

{
"inquire": "login_with_password",
"captchaId": "9cf48a75-6be1-4008-b34e-8906220c472f",
"proofOfWork": "1:15:220313184752:abe…539::Ekf…w==:"

}
]

}

• If you receive the proofOfWork parameter, it is recommended to asynchronously immediately run the

algorithm for finding a solution, without waiting for the user to select the login and password login mode

and enter the data. This will hide the delay time for solving the problem from the user (it can be several

seconds, depending on the complexity of the task). The Hashcash89 algorithm is currently being used.

Important: Youneed to supplement the proofOfWork parameterwith such a value that the hash calculated

from it using the SHA‐1 algorithm contains at the beginning as many zero bits as specified by the task

condition (the number after the first character : in the proofOfWork parameter).

89 http://www.hashcash.org

3.5. Advanced features 436

http://www.hashcash.org

Blitz Identity Provider, version 5.23

For example, the solution for 1:15:yyyy03Su212003:BlitzIdp::McMybZIhxKXu57jd:0 will

be the line 1:15:yyyy03Su212003:BlitzIdp::McMybZIhxKXu57jd:3/g

Depending on the authentication method selected, the application calls in Blitz Identity Provider login using one

of the following methods:

• Login with the username and password (page 437).

• Login by phone and SMS confirmation code (page 442).

• Login using the QR code (page 446).

• Login via an external identity provider – this type of login is possible only through a browserwith redirection

of the user to the login page of the external identity provider. You need to repeat the Authorization
Endpoint call (see Getting the authorization code (page 300)), use the required value of the bip_ac-
tion_hint parameter in the call, corresponding to the external login provider selected by the user (for

example, bip_action_hint=externalIdps:esia:esia_1).

Request example:

https://login.company.com/blitz/oauth/ae?response_type=code&client_id=portal.ru&
→˓scope=openid+profile&redirect_uri=https://apitest.company.com/success&
→˓state=342a2c0c-d9ef-4cd6-b328-b67d9baf6a7f& bip_action_hint=used_
→˓externalIdps:esia:esia_1

In this case, the completion of the login process will occur in a standard way in accordance with OpenID Connect

– Blitz Identity Provider will return the authorization code to the redirect_uri application handler.

Logging in using login and password

If CAPTCHA is configured in Blitz Identity Provider, then before calling the login and password verification, the

applicationmustmake calls to receive and verify the CAPTCHA. Verification requests should be generated through

specialized proxy services Blitz Identity Provider, and not directly to CAPTCHA services.

When using reCAPTCHA v3, you must initialize reCAPTCHA v3 according to the documentation90.

• Upload the script on the application page using the same reCAPTCHA v3 sitekey as registered in Blitz

Identity Provider:

<script src="https://www.google.com/recaptcha/api.js?render=reCAPTCHA_site_key"></
→˓script>

• Call grecaptcha.execute on pressing the login button:

<script>
function onClick(e) {

e.preventDefault();
grecaptcha.ready(function() {

grecaptcha.execute('reCAPTCHA_site_key', {action: 'submit'}).
→˓then(function(token) {

// Add your logic to submit to your backend server here.
});

});
}

</script>

Immediately after calling from the reCAPTCHA services login page, you must call the verify operation from the

application server. The call should not bemade directly to the Google servers, but through a special proxy service

in Blitz Identity Provider.

90 https://developers.google.com/recaptcha/docs/v3#programmatically_invoke_the_challenge

3.5. Advanced features 437

https://developers.google.com/recaptcha/docs/v3#programmatically_invoke_the_challenge

Blitz Identity Provider, version 5.23

Example of a verification request (operation verify):

POST /blitz/login/captcha/verify
Content-Type: 'text/json'
{

"ctx": {
// captchaId
"id": "9cf48a75-6be1-4008-b34e-8906220c472f",
"method": "password"

},
"params": {

// token для проверки капчи, полученный при регистрации в Google
"response": "03…sA"

}
}

Ответ ``HTTP 200 OK``:

{
"action": "submit",
"challenge_ts": "2021-03-16T11:18:41Z",
"success": true,
"hostname": "company.com",
"score": 0.9

}

Besides, if Proof of Work protection is enabled in Blitz Identity Provider, then you need to calculate the value of

the proofOfWork parameter (see Starting the login process (page 435)).

To verify the login and password, the application must send an HTTP POST request to AJAX to Blitz Identity

Provider (necessarily with withCredentials: true) on the URL https://login.company.com/
blitz/login/methods/headless/password with Content-Type x-www-form-urlencoded
and a Body containing the login and password parameters, as well as the calculated proofOfWork (if this

parameter was received from Blitz Identity Provider when starting the login process).

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/password' \
--header "Content-Type: application/x-www-form-urlencoded" \
--data 'login=логин&password=пароль&proofOfWork=решение'

Blitz Identity Provider performs the necessary security checks upon receipt of the request (whether the CAPTCHA

has been passed, whether ProofOfWork has been resolved, whether the account has been blocked). If the

security checks are passed, then Blitz Identity Provider checks the transmitted username and password.

If the login and password checks are successful and if the authentication is sufficient, Blitz Identity Provider will

automatically redirect the user to the redirect_uri handler address, adding the authorization code and the

state parameter to the request. Using the received authorization code, the application will continue the stan‐

dard OpenID Connect interaction to receive security tokens and account data.

Example of a redirect response if the SSO session already exists:

…
< HTTP/2 302
…
< location: https://…?code=…&state=…
…

If any checks failed or if further actions from the user are required, then Blitz Identity Provider returns one of the

instructions.

3.5. Advanced features 438

Blitz Identity Provider, version 5.23

Example of a response in case of a login and password verification error:

{
"inquire": "login_with_password",
"errors": [

{
"code": "invalid_credentials",
"params": {}

}
]

}

Upon receiving such a response, the application can display the error text and prompt the user to enter another

username and password, after which you can repeat the login and password verification.

If the user has entered a password that was previously in the account, or if the account is blocked, the error will

look like:

{
"inquire": "login_with_password",
"captchaId": "9cf48a75-6be1-4008-b34e-8906220c472f",
"proofOfWork": "1:15:220313184752:abe…539::Ekf…w==:",
"errors": [

{
"code": "invalid_credentials",
"params": {

"_cause": "used_old_password"
}

}
]

}

An example of getting an error that the CAPTCHA check failed:

{
"inquire": "login_with_password",
"captchaId": "9cf48a75-6be1-4008-b34e-8906220c472f",
"errors": [

{
"code": "invalid_captcha",
"params": {}

}
]

}

An example of an error that the Proof of Work solution was not checked:

{
"inquire": "handle_error",
"errors": [

{
"code": "doesNotMatch",
"params": {}

}
]

}

If special protection is enabled in Blitz Identity Provider to delay the verification of the login and password, then

when checking the login and password, you can receive the following instruction from Blitz Identity Provider that

you need to re‐call the password verification after a certain number of seconds:

3.5. Advanced features 439

Blitz Identity Provider, version 5.23

{
"inquire": "delayed_login_with_password",
"delayedFor": 5

}

A repeat call must be made when the required time has passed. The isDelayed=true parameter must be

passed to the repeated call.

Example of calling password verification again in response to the instruction delayed_login_with_pass-
word:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/password' \
--header "Content-Type: application/x-www-form-urlencoded" \
--data 'login=логин&password=пароль&proofOfWork=решение&isDelayed=true'

If special password brute force protection is enabled in Blitz Identity Provider, then Blitz Identity Provider may

request additional CAPTCHA verification when verifying the password for this account. There are two possible

situations:

• The user passed the wrong password, after which the protection turned on, and the CAPTCHA is needed

for another authentication attempt.

• User account password brute force protection was enabled earlier. The current transmitted password was

not verified because the CAPTCHA test was not performed.

In the first case, you need to inform the user that the username and password are incorrect, and for a new

attempt, in addition to entering the password, request to take a CAPTCHA test.

In the second case, you need to ask the user to take a CAPTCHA test, and then send the previously entered

username and password for verification.

An example of the answer for the first case is that the password is incorrect and a CAPTCHA test is needed:

{
"inquire":"login_with_password",
"captchaId":"1c9e4047-c8c4-47ad-a447-cc1809bd3e6c",
"errors":[

{
"code":"invalid_credentials",
"params":{}

}
]

}

An example of the answer for the second case is that the passwordwas not checked and a CAPTCHA test is needed:

{
"inquire":"login_with_password",
"captchaId":"2f818f5d-3a89-428d-b424-cde38c19051e",
"errors":[

{
"code":"bypass_captcha",
"params":{}

}
]

}

An example of an error if the account is temporarily blocked:

3.5. Advanced features 440

Blitz Identity Provider, version 5.23

{
"inquire":"login_with_password",
"errors": [

{
"code":"pswd_method_temp_locked",
"params":{"0":"2"}

}
]

}

An example of an error if the account is blocked due to prolonged inactivity:

{
"inquire": "handle_error",
"errors": [

{
"code": "inactivity_lock",
"params": {}

}
]

}

If the account password does not match the password policy, it may be necessary to change the password when

logging in. In this case, Blitz Identity Provider will return instructions that you need to redirect the user to the

page with the specified address:

{
"inquire":"go_to_web",
"redirect_uri":

"https://…/blitz/login/methods/password/change?f=false&c=password_policy_
→˓violated"
}

If the login and password are successful, but you additionally need to confirm the login, then instructions will be

returned with possible confirmation methods:

{
"inquire":"choose_one",
"items": [

{
"inquire":"ask_to_send_sms"

},
{

"inquire":"go_to_web",
"redirect_uri":"https://login.company.com/blitz/login/methods2/sms"

}
]

}

You can either redirect the user to a web page so that he continues to confirm login on the Blitz Identity Provider

web page, or continue to use the HTTP API to confirm login by SMS code (page 448).

If the login procedure set for the application is configured to invoke an additional screen after logging in (for exam‐

ple, see Invoking the auxiliary application at the moment of login (page 419)). Invoking the auxiliary application

at the time of login), then Blitz Identity Provider redirects the user to this screen.

3.5. Advanced features 441

Blitz Identity Provider, version 5.23

Login by phone and confirmation code

Logging in by phone and confirmation code consists of the following steps:

• Sending a confirmation code to the user via SMS.

• Verification of the confirmation code entered by the user.

To send the user a confirmation code via SMS, the application must send an HTTP POST request to AJAX to Blitz

Identity Provider (necessarily with withCredentials: true) on the URL https://login.company.
com/blitz/login/methods/headless/sms/bind with Content-Type x-www-form-urlen-
coded and a Body containing the user’s login. It is recommended to pass the phone number entered by

the user as the login.

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/sms/bind' \
--header "Content-Type: application/x-www-form-urlencoded" \
--data 'login=логин'

If the account with the transmitted username is not found, then Blitz Identity Provider returns an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"no_subject_found",
"params":{}

}
]

}

If the account is found, but a search of confirmation codes was previously recorded for it, then Blitz Identity

Provider returns an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"method_temp_locked",
"params":{}

}
]

}

If the account is found and it is possible to log in this way, then Blitz Identity Provider will send the user an SMS

with a confirmation code and return a response:

{
"inquire":"enter_sms_code",
"contact":"+79991234567",
"ttl":300,
"remain_attempts":3

}

The received response indicates how many seconds the user has left to send the code for verification (ttl), how

many attempts he has to enter the code (remain_attempts), to which phone number the code was sent to him

(contact).

To verify the confirmation code entered by the user, the application must send an HTTP POST request

to AJAX to Blitz Identity Provider (necessarily with withCredentials: true) on the URL https:/

3.5. Advanced features 442

Blitz Identity Provider, version 5.23

/login.company.com/blitz/login/methods/headless/sms/bind with Content-Type
x-www-form-urlencoded and a Body containing an sms-code with a confirmation code.

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/sms/bind' \
--header "Content-Type: application/x-www-form-urlencoded" \
--data 'sms-code=123456'

If the code is incorrect, then Blitz Identity Provider will return an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"invalid_otp",
"params":{}

}
],
"contact":"+79991234567",
"remain_attempts":2,
"ttl":276

}

If the number of code verification attempts has ended, Blitz Identity Provider returns an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"no_attempts",
"params":{}

}
]

}

If the code has expired, Blitz Identity Provider returns an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"expired",
"params":{}

}
]

}

In case of this error, you can request to send a new confirmation code. To do this, the application must call Blitz

Identity Provider as follows:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/sms/bind' \
--header "Content-Type: application/x-www-form-urlencoded" \
--data 'sms-send=sms'

If you request to resend the code before the expiration of the previous one, an error will be returned:

3.5. Advanced features 443

Blitz Identity Provider, version 5.23

{
"inquire":"handle_error",
"errors":[

{
"code":"code_not_expired",
"params":{}

}
]

}

If the total number of attempts to log in using the confirmation code from the SMS is exceeded, then Blitz Identity

Provider temporarily blocks the login for the account using the confirmation code. In this case, the next time you

try to enter an incorrect confirmation code, Blitz Identity Provider may return an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"method_temp_locked",
"params":{}

}
]

}

If the entered confirmation code is correct, and this is enough to complete the login, then Blitz Identity Provider

will automatically redirect the user to the redirect_uri handler address, adding the authorization code and

the state parameter to the request. Using the received authorization code, the application will continue the

standard OpenID Connect interaction to receive security tokens and account data.

Example of a response in case of a successful login:

…
< HTTP/2 302
…
< location: https://…?code=…&state=…
…

If the verification of the confirmation code is successful, but you additionally need to confirm the login, an in‐

struction will be returned with possible confirmation methods:

{
"inquire":"choose_one",
"items":[

{
"inquire":"go_to_web",
"redirect_uri":"https://login.company.com/blitz/login/methods2/email"

}
]

}

3.5. Advanced features 444

Blitz Identity Provider, version 5.23

Logging in with email

Logging in using email consists of the following steps:

• Emailing a confirmation code to a user .

• Verification of the confirmation code entered by the user.

To send the user a confirmation code via email, the application must send an HTTP POST request to AJAX to Blitz

Identity Provider (necessarily with withCredentials: true) on the URL https://login.company.
com/blitz/login/methods/headless/email/bind with Content-Type x-www-form-ur-
lencoded and a Body containing the user’s login. It is recommended to pass the email entered by the user

as the login.

Request example:

curl --location --request POST 'https://login.company.com/blitz/login/methods/
→˓headless/email/bind' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'login=<email>'

Response example:

{
"inquire": "enter_email_code",
"contact": "user@gmail.com",
"remain_attempts": 3,
"ttl": 300

}

Code verification:

curl --location --request POST 'https://login.company.com/blitz/login/methods/
→˓headless/email/bind' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'email-code=746234'

Response options if the verification failed:

{
"errors": [

{
"code": "invalid_otp",
"params": {}

}
],
"contact": "user@gmail.com",
"inquire": "handle_error",
"remain_attempts": 2,
"ttl": 257

}

{
"inquire": "handle_error",
"errors": [

{
"code": "no_attempts",
"params": {}

}
]

}

3.5. Advanced features 445

Blitz Identity Provider, version 5.23

Resubmitting the code:

curl --location --request POST 'https://login.company.com/blitz/login/methods/
→˓headless/email/bind' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--header 'Cookie: blc=Hc..; bua=7cd2c312-...; cTm=1:RGVm==; cTmTgs=1:c3Nv; oauth_
→˓az=0MyeV-5v_...OnIE; portal_lang=ru' \
--data-urlencode 'email-send=email'

Response to the code resubmission:

{
"inquire": "enter_email_code",
"contact": "user@gmail.com",
"remain_attempts": 1,
"ttl": 288

}

Login by QR code

Login by QR code consists of the following steps:

• Displaying a QR code to the user on the computer where the login is performed;

• Periodic check whether the user has scanned the QR code with the mobile application;

• Periodic verification of whether the user has confirmed or rejected the QR code login request in the mobile

application;

• Updating an outdated QR code.

The application should display the QR code to the user by encoding the string received from Blitz Identity Provider

into it. Below is a fragment of the instructions for logging in using a QR code (see Starting the login process

(page 435)).

{
"inquire":"choose_one",
"items":[

…
{

"inquire":"show_qr_code",
"link":"https://…?code=dde087f0-8f4a-478e-886b-5354b0283362",
"expires":1660905165,
"logo":"https:/…"

}
]

}

Explanations of the parameters received from Blitz Identity Provider:

• inquire is an instruction with an available login option, in case of login using a QR code, the value is

show_qr_code;

• link is a link that should be encoded in a QR code displayed to the user;

• expires is the time (in Unix Epoch) until which the QR code is valid. After the expiration date, it is rec‐

ommended to display to the user that the QR code is expired;

• logo – if Blitz Identity Provider is configured to display a small logo in the center on top of the QR code,

then the URL of the logo will be returned in the specified setting.

3.5. Advanced features 446

Blitz Identity Provider, version 5.23

When the application displays the QR code to the user, it is necessary to wait for the user to read the QR code

with a special mobile application. The integration of the mobile application for embedding the QR code login

function is described in Login to the application using a QR code (page 325).

The web application can periodically check whether the QR code has been read by the mobile application. To do

this, you need to execute an HTTP GET request in AJAX to Blitz Identity Provider (necessarily with withCreden-
tials: true) on the URL https://login.company.com/blitz/login/methods/headless/
qrCode/pull.

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request GET 'https://login.company.com/blitz/login/methods/headless/qrCode/pull'

If the QR code has not been read yet, the response will be returned:

{
"command":"showQRCode"

}

If the QR code is read, the response will be returned:

{
"command":"askForConfirm"

}

In this case, you can update the user’s web page andwrite on it that confirmation of login in themobile application

is expected.

If the QR code is expired, the response will be returned:

{
"command":"needRefresh",
"cause":"qr_code_expired"

}

If the user rejected the QR code login request in the mobile application, the response will be returned:

{
"command":"needRefresh",
"cause":"refused_login"

}

If the QR code is expired or the user declined to log in using the QR code, then you can ask the user to get a new

QR code. To do this, run an HTTP POST request in AJAX to Blitz Identity Provider (required with withCreden-
tials: true) on the URL https://login.company.com/blitz/login/methods/headless/
qrCode/refresh.

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/qrCode/
→˓refresh'

Response example:

{
"link":"https://…?code=4ddf1667-d57f-4f86-b8f2-3ee53b367dfe",
"expires":1660922807,

(continues on next page)

3.5. Advanced features 447

Blitz Identity Provider, version 5.23

(continued from previous page)

"logo":"https:/…"
}

If the user has confirmed the QR code login request in the mobile application, then the service https://
login.company.com/blitz/login/methods/headless/qrCode/pull will return the response:

{
"command":"needComplete"

}

In response to this request, to complete the login, an HTTP POST request must be executed in AJAX to Blitz

Identity Provider (necessarily with withCredentials: true) on the URL https://login.company.
com/blitz/login/methods/headless/qrCode/complete.

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/qrCode/
→˓complete'

If the authentication is sufficient to complete the login, Blitz Identity Provider will automatically redirect the user

to the redirect_uri handler address, adding the authorization code and the state parameter to the re‐

quest. Using the received authorization code, the application will continue the standard OpenID Connect inter‐

action to receive security tokens and account data.

Example of a response in case of a successful login:

…
< HTTP/2 302
…
< location: https://…?code=…&state=…
…

If you need to go through additional login confirmation, instructions will be returned with possible confirmation

methods:

{
"inquire":"choose_one",
"items":[

{
"inquire":"go_to_web",
"redirect_uri":"https://login.company.com/blitz/login/methods2/email"

}
]

}

Confirmation of login by confirmation code

Confirmation of the login using the SMS confirmation code consists of the following steps:

• Sending a confirmation code to the user via SMS.

• Verification of the confirmation code entered by the user.

To send the user a confirmation code via SMS, the application must send an HTTP POST request to AJAX to Blitz

Identity Provider (necessarily with withCredentials: true) on the URL https://login.company.
com/blitz/login/methods/headless/sms/bind with Content-Type x-www-form-urlen-
coded without Body:

3.5. Advanced features 448

Blitz Identity Provider, version 5.23

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/sms/bind' \
--header "Content-Type: application/x-www-form-urlencoded"

Blitz Identity Provider will send the user an SMS with a confirmation code and return a response:

{
"inquire":"enter_sms_code",
"contact":"+79991234567",
"ttl":300,
"remain_attempts":3

}

The received response indicates how many seconds the user has left to send the code for verification (ttl), how

many attempts he has to enter the code (remain_attempts), to which phone number the code was sent to him

(contact).

To verify the confirmation code entered by the user, the application must send an HTTP POST request

to AJAX to Blitz Identity Provider (necessarily with withCredentials: true) on the URL https:/
/login.company.com/blitz/login/methods/headless/sms/bind with Content-Type
x-www-form-urlencoded and a Body containing an sms-code with a confirmation code.

Request example:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/sms/bind' \
--header "Content-Type: application/x-www-form-urlencoded" \
--data 'sms-code=123456'

If the code is incorrect, then Blitz Identity Provider will return an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"invalid_otp",
"params":{}

}
],
"contact":"+79991234567",
"remain_attempts":2,
"ttl":276

}

If the number of code verification attempts has ended, Blitz Identity Provider returns an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"no_attempts",
"params":{}

}
]

}

If the code has expired, Blitz Identity Provider returns an error:

3.5. Advanced features 449

Blitz Identity Provider, version 5.23

{
"inquire":"handle_error",
"errors":[

{
"code":"expired",
"params":{}

}
]

}

In case of this error, you can request to send a new confirmation code. To do this, the application must call Blitz

Identity Provider as follows:

curl -v -b cookies.txt -c cookies.txt \
--request POST 'https://login.company.com/blitz/login/methods/headless/sms/bind' \
--header "Content-Type: application/x-www-form-urlencoded" \
--data 'sms-send=sms'

If you request to resend the code before the expiration of the previous one, an error will be returned:

{
"inquire":"handle_error",
"errors":[

{
"code":"code_not_expired",
"params":{}

}
]

}

If the total number of attempts to confirm login by SMS confirmation code is exceeded, then Blitz Identity Provider

temporarily blocks login confirmation for the account by confirmation code. In this case, the next time you try to

enter an incorrect confirmation code, Blitz Identity Provider may return an error:

{
"inquire":"handle_error",
"errors":[

{
"code":"method_temp_locked",
"params":{}

}
]

}

If the entered confirmation code is correct, and this is enough to complete the login, then Blitz Identity Provider

will automatically redirect the user to the redirect_uri handler address, adding the authorization code and

the state parameter to the request. Using the received authorization code, the application will continue the

standard OpenID Connect interaction to receive security tokens and account data.

Example of a response in case of a successful login:

…
< HTTP/2 302
…
< location: https://…?code=…&state=…
…

3.5. Advanced features 450

Chapter 4

Modules

In this section, you will find detailed information on the Blitz Identity Provider add‐on modules.

4.1 Blitz Keeper security gateway

4.1.1 About Blitz Keeper

With the Blitz Identity Provider, you can implement access control when secured services are invoked by applica‐

tions.

Providing authorization when applications invoke services is based on OAuth 2.0 specifications. Before using

services, an application must obtain an access token (access_token) from Blitz Identity Provider. Various

interaction methods (page 294) are available to the application to obtain an access token. The access token can

be obtained:

• in the context of a user login ‐ the token will include information about the user and a set of scopes (per‐

missions) granted by the user to the application;

• to the application outside of the user login ‐ the token will include a set of scopes (permissions) from the

granted to the application.

Then using the access token obtained, the application can invoke services. In doing so, the following complications

will occur:

• within each service it will be necessary to implement its own authorization logic – check the provided access

token, extract information about the user and provided consents (permissions) from them, and analyze

whether those permissions are sufficient for service to be executed.

• the application will use a single access token to invoke different services. In this case, the access token may

contain more information about the user and a larger set of consents (permissions) than is necessary for a

particular invoked service. This will violate the principle of least privilege ‐ the service will get more access

rights than it needs to perform its task.

To solve the above described difficulties, Blitz Identity Provider provides a special application ‐ the Security Gate‐

way (blitz-keeper). This application is a specialized proxy server used when calling protected services ‐ the
application does not call the services directly, but through the Security Gateway. The Security Gateway takes care

of the following tasks:

• Checks the authorization header included in the invoke of service, extracts the access token and, in interac‐

tion with the authorization service (blitz-idp), checks whether the access token is valid, and whether
the user and the application has sufficient access rights to invoke the secured service.

• In interaction with the authorization service (blitz-idp) replaces the access token in such a way that

the security token transmitted from the Security Gateway to the protected service contains only the set of

user information and permissions required for the protected service operation. Redundant permission and

451

Blitz Identity Provider, version 5.23

user information can be either removed from the security token or additional permissions and information

added to the access token, if this is configured in the security policy.

• Logs successful and unsuccessful access control events in the Blitz Identity Provider security event log.

The interaction between the Security Gateway and the authorization service is based on the OAuth 2.0 Token

Exchange91 specification. Picture of the interaction is shown in the diagram.

Configuring the use of the security gateway to access protected services is described in the following sections.

4.1.2 Installing the blitz‐keeper service

Important: See the system requirements (page 10).

To install the blitz-keeper service, use the blitz-keeper-5.X.X.bin installer.

To install blitz-keeper, do the following:

1. Copy the blitz-keeper-5.X.X.bin file from the Blitz Identity Provider distribution to any directory

on the designated server (for example, /tmp).

2. Run the blitz-keeper-5.X.X.bin installer:

cd /tmp
chmod +x blitz-keeper-5.X.X.bin
./blitz-keeper-5.X.X.bin

In response to the installer’s questions, specify JAVA_HOME as the directory of the JDK installation on the

server.

Blitz Keeper will be installed in the /usr/share/identityblitz directory.

3. Add the blitz-keeper service to autostart and launch it:

systemctl enable blitz-keeper
systemctl start blitz-keeper

4. Adjust the balancing settings block in the nginx configuration file (directory /etc/nginx/conf.d):

91 https://tools.ietf.org/html/rfc8693

4.1. Blitz Keeper security gateway 452

https://tools.ietf.org/html/rfc8693
https://tools.ietf.org/html/rfc8693

Blitz Identity Provider, version 5.23

upstream blitz-keeper {
server [BLITZ-KPR-NODE-01]:9012 max_fails=3 fail_timeout=120;
server [BLITZ-KPR-NODE-02]:9012 max_fails=3 fail_timeout=120;

}

Note: [BLITZ-%%%-NODE-XX] – names (hostname) of the blitz-keeper servers.

4.1.3 Configuring Blitz Keeper

Blitz Keeper is configured by editing the configuration file blitz-keeper.conf located in the /etc/
blitz-keeper directory. Example of the configuration file:

{
"authenticators": {
"prod-auth": {

"type": "token-exchange",
"te": "https://blitz-host/blitz/oauth/te",

},
},
"services" : {
"api-1":{

"display-name" : "secured services",
"host": "service-host.com",
"locations": {

"/api/service1/**": {
"methods" : ["GET","POST"],
"authenticator": "prod-auth",
"required-scopes": ["scope1","scope2"]

},
"/path/api/user/*/getdata/**": {
"methods" : ["GET","PUT"],
"authenticator": "prod-auth",
"required-scopes": ["scope3"]

}
}

}
}

}

In the authenticators block it is necessary to register all used blitz-idp authorization services. Usually

it is sufficient to use one single authorization service to protect the services, and then only one block needs to be

filled in as in the example (in the example one authorization service named prod-auth is registered). If several

separate Blitz Identity Provider installations are used in the system (for example, PROD and TEST environment

or internal loop for employees and external loop for clients), then you can use a common security gateway that

will interact with several different authorization services ‐ then you need to specify the settings of several autho‐

rization services in the authenticators block. For each authorization service a name is set (in the example

prod-auth is used, but you can set any name). In the settings block of the authorization service the type of

interaction (type) is set in the value token‐exchange (so far it is the only supported type of interaction) and the
address (te) of the call of the Token Endpoint handler of the authorization service. If blitz‐keeper is deployed

on separate servers, it is recommended to specify the address of the handler with https and domain name. If

the blitz-keeper application is deployed on the same server as the blitz-idp authorization service, it is

recommended to specify a local name in te, e.g. http://localhost:9000/blitz/oauth/te.

In the services block you must register the protected services. You can create a common settings block or

several separate blocks for all protected services. Each block has a name (in the example, api-1). The settings

are defined inside the block:

• display-name ‐ text description of the service (any comment or description);

4.1. Blitz Keeper security gateway 453

Blitz Identity Provider, version 5.23

• host ‐ server address of the secured service;

• locations ‐ allowed paths and operations of service invoke.

The locations block specifies the settings of all service paths and allowed methods. The service address is

specified as the name of each nested block. It is acceptable to use an asterisk (*) in the address to indicate the

omission of a separate component in the service path address and it is acceptable to use a double asterisk (**)
to indicate that the rest of the service path can be any component. Within the service address nested block, you

can optionally list the allowed methods of the service (methods setting), specify the name of the authorization

service to be used (authenticator setting) and a list of permissions (required-scopes setting) for the

target access token to be included in the access token passed to the protected service.

After changing the settings in blitz-keeper.conf, the security gateway must be restarted.

4.1.4 Creating service access rules

See the general information (page 282) on how to create the list of rules to access protected services over Token

Exchange.

4.1.5 Configuring access token exchange

See the general information (page 286) on how to configure access token exchange.

4.1.6 Viewing logs

The operation of the blitz-keeper service is recorded into a separate log. To view the log, open the

blitz-keeper.log file in the /var/log/identityblitz/ directory.

sudo vim /var/log/identityblitz/blitz-keeper.log

4.2 Blitz Panel app showcase

4.2.1 About Blitz Panel

The Blitz Panelmodule is used for creating a panel that provides userswith quick access to connected applications.

Users can select the panel language, add frequently used applications to Favorites, and navigate to the User

profile.

4.2. Blitz Panel app showcase 454

Blitz Identity Provider, version 5.23

Administration of the module is performed via the blitz-panel service.

4.2.2 Installing the blitz‐panel service

Important: See the system requirements (page 10).

To install the blitz-panel service, use the blitz-panel.bin installer.

Important: The blitz-panel service can be installed on any server where the Blitz Identity Provider server

is installed.

To install blitz-panel, do the following:

1. Copy the blitz-panel.bin file from the Blitz Panel distribution to any directory on the designated

server (for example, /tmp).

2. Run the blitz-panel.bin installer, specifying the -j launch parameter as JAVA_HOME, the JDK in‐

stallation directory.

Blitz Panel will be installed in the /usr/share/identityblitz/blitz-panel directory.

cd /tmp
chmod +x blitz-panel.bin
./blitz-panel.bin -- -j <JAVA_HOME>

3. Create a panel.conf file with the initial Blitz Panel settings:

• IDP_DOMAIN – the name of the domain with running Blitz Identity Provider;

• CLIENT_ID – identifier for connecting the Blitz Panel application to Blitz Identity Provider via OAuth
2.0.

Attention: It’s not allowed to use colons and tildes in client_id.

4.2. Blitz Panel app showcase 455

Blitz Identity Provider, version 5.23

• CLIENT_SECRET – secret key for connecting the Blitz Panel application to Blitz Identity Provider via

OAuth 2.0.

• PANEL_DOMAIN – the name of the domain on which Blitz Panel will be running.

Listing 1: Configuration file example

IDP_DOMAIN=mydomain.com
CLIENT_ID=qwerty12345
CLIENT_SECRET=54321ytrewq
PANEL_DOMAIN=mydomain.com/panel

4. Run the Blitz Panel initial setup script, specifying the path to the panel.conf file.

/usr/share/identityblitz/blitz-panel/bin/configure -f /tmp/panel.conf

As a result of the script execution, the Blitz Panel configuration files will be prepared.

4.2.3 Blitz Panel configuration

To configure Blitz Panel, do the following:

1. Put application icons into the /usr/share/identityblitz/blitz-panel/static/
resources/icons/ directory.

Note: The following formats are supported:

• SVG,

• PNG, maximum 128px on the minimum side.

2. In Blitz Identity Provider, create (page 171) an application to connect Blitz Panel to Blitz Identity Provider

via OAuth 2.0.

4.2. Blitz Panel app showcase 456

Blitz Identity Provider, version 5.23

Specify client_id and client_secret set during the Blitz Panel installation.

4.2. Blitz Panel app showcase 457

Blitz Identity Provider, version 5.23

Be aware that you need to copy the URLs of API requests from the Protocols section to the /etc/
blitz-panel/app.conf configuration file (see the next step).

Tip: The values of client_id and client_secret set during the Blitz Panel installation can be

changed if necessary in the same configuration file.

3. Open the /etc/blitz-panel/app.conf configuration file. In the session ‐> oauth section, set

parameters to connect the Blitz Panel application to Blitz Identity Provider via OAuth 2.0.

• name: arbitrary connection name;

4.2. Blitz Panel app showcase 458

Blitz Identity Provider, version 5.23

• clientId: check if theclient_id application identifiermatches the one specified in Blitz Identity

Provider.

• clientSecret: check if the application secret key matches the one specified in Blitz Identity

Provider.

• logoutUrl: URL that will be used by Blitz Panel to send the logout request to Blitz Identity Provider.

• authUrl: URL that will be used by Blitz Panel to send the user authorization request to Blitz Identity
Provider.

• tokenUrl: URL thatwill be used by Blitz Panel to send the request to Blitz Identity Provider to obtain
or update an access token.

• me: URL (url) that will be used by Blitz Panel to send the request to Blitz Identity Provider to receive
a user data, and an attribute (subjectIdAttr) to search for a user in the storage.

• scopes: list of permissions that will be available to Blitz Panel.

"session": {
"oauth": {

"name": "Blitz IdP",
"clientId": "CHANGE_CLIENT_ID",
"clientSecret": "CHANGE_CLIENT_SECRET",
"logoutUrl": "https://CHANGE_IDP_DOMAIN/blitz/login/logout",
"authUrl": "https://CHANGE_IDP_DOMAIN/blitz/oauth/ae",
"tokenUrl": "https://CHANGE_IDP_DOMAIN/blitz/oauth/te",
"me": {

"url": "https://CHANGE_IDP_DOMAIN/blitz/oauth/me",
"subjectIdAttr": "sub"

},
"scopes": [

"openid",
"profile"

]
},
...

},
...

4. If necessary, set a user session parameters: the URL to which the user will be redirected after logging out,

the TTL value, the maximum period of inactivity in seconds, the period between the session activity checks

in milliseconds, the created cookie name, etc.

"session": {
...
"postLogoutUrl": "/blitz/panel",
"ttlInSec": 36000,
"inactivityPeriodInSec": 3600,
"checkSessionPeriodInMs": 1000,
"cookie": {

"name": "scs",
"path": "/blitz/panel",
"transient": true

},
"useCompression": false,
"encodingKey": "CHANGE_SCS_ENC",
"hmacKey": "CHANGE_SCS_HMAC"

},
...

5. The apps ‐> sources section contains groups of applications that can be formed according to arbitrary

characteristics (static, dynamic, etc.). Each group has a name, a list of applications in the group, and rules

that determine which users the applications are shown to.

4.2. Blitz Panel app showcase 459

Blitz Identity Provider, version 5.23

In the apps ‐> sources‐> rules section, set the rules that determine for which users certain applica‐

tions will be displayed.

Each rule consists of the following parts:

• name: the rule name.

• conditions: conditions for user selection.

The following types of conditions are supported:

– "typ": "userGroup" ‐ user group (page 149). Youmust specify the group profile name and

group ID.

– "typ": "userClaims" ‐ flexible selection of users based on the claims regarding their at‐

tributes. A condition of this type can contain statements on multiple attributes. In order for a

user to be selected according to a condition, they must satisfy all statements in it.

Attention: A rule can contain multiple conditions. A rule is applied to a user if the user meets at

least one condition.

• tags: tags linking user selection rules and applications.

The following types of tags are supported:

– arbitrary parameter (for example, role, department, etc.);

– application identifier (set in the appId list).

Attention: A rule is applied to an application if at least one of the values specified in this section

is present in the application settings (see the next step).

6. In the apps ‐> sources ‐> apps section, set the list of applications connected to Blitz Identity Provider,

that will be displayed on the panel. For each application, specify the following settings:

• id: application ID in Blitz Identity Provider.

• name: the name of the application that will be displayed on the panel, in required languages.

• url: URL of the application’s start page.

• icon: the icon file name in the /usr/share/identityblitz/blitz-panel/static/
resources/icons/ directory.

• tags: tags that determine for which users the application will be displayed on the panel according

to the rules specified above (optional).

• desc: description of the application in required languages.

Listing 2: Example of setting up rules and application list

"apps": {
"sources": [

{
"name": "Static Applications",
"type": "static",
"apps": [

{
"id": "dev_portal",
"name": {
"en": "Developer Tools 24"

},
"url": "https://my.domain.com/dev/portal",

(continues on next page)

4.2. Blitz Panel app showcase 460

Blitz Identity Provider, version 5.23

(continued from previous page)

"icon": "confluence.svg",
"tags": {

"role": [
"admin",
"sys_admin"

]
}

},
{

"id": "jira",
"url": "https://my.domain.com/dev/jira",
"name": {
"ru": "Jira"

},
"icon": "jira.svg",
"tags": {

"role": [
"admin",
"sys_admin"

]
}

},
{

"id": "test-app",
"url": "https://my.domain.com/dev/test",
"name": {
"en": "Test application"

}
},
{

"id": "atom",
"url": "https://my.domain.com/dev/atom",
"name": {
"en": "Atom"

},
"desc": {
"en": "Atom is your essential companion"

}
},
{

"id": "call_center",
"url": "https://my.domain.com/dev/call",
"name": {
"en": "Call center"

},
"desc": {
"en": "Call center management application"

},
"tags": {

"role": [
"admin",
"sys_admin"

]
}

},
{

"id": "web_mail",
"name": {
"en": "Mailbox"

},
"desc": {

(continues on next page)

4.2. Blitz Panel app showcase 461

Blitz Identity Provider, version 5.23

(continued from previous page)

"en": "Corporate mailbox"
},
"icon": "gmail.svg",
"url": "https://my.domain.com/dev/portal",
"tags": {

"role": [
"sys_admin"

]
}

},
{

"id": "yandex",
"url": "https://my.domain.com/dev/yandex",
"name": {
"en": "Search engine"

},
"desc": {
"en": "Search engine web interface"

}
}

],
"rules": [

{
"name": "admin_role",
"conditions": [

{
"typ": "userGroup",
"profile": "main_group_profile",
"id": "app_admin"

},
{

"typ": "userClaims",
"claims": {

"company_type": "IT",
"position": [

"head",
"master"

]
}

},
{

"typ": "userClaims",
"claims": {

"company_name": "Моя компания"
}

}
],
"tags": {

"appId": [
"dev_portal",
"yandex"

],
"role": [

"admin",
"sys_admin"

]
}

},
{

"name": "atom",
"conditions": [

(continues on next page)

4.2. Blitz Panel app showcase 462

Blitz Identity Provider, version 5.23

(continued from previous page)

{
"typ": "userClaims",
"claims": {

"tags": [
"atom"

]
}

}
],
"tags": {

"appId": [
"atom"

]
}

}
]

}
]

},
...

7. Add the blitz-panel service to autostart and launch it:

systemctl enable blitz-panel
systemctl start blitz-panel

4.2.4 Blitz Panel design and localization

Appearance modification

If necessary, you can change the appearance of the panel by making changes to the files in the /usr/share/
identityblitz/blitz-panel/static directory. You can customize the following elements:

• favicon;

• the index.html template;

• CSS styles (.../resources/styles.css).

Adding a language

To add a language, put the file with translated strings<two-letter language code>.json (for example,

ar.json for Arabic) into the /usr/share/identityblitz/blitz-panel/static/resources/
locales directory and restart the blitz-panel service.

sudo systemctl restart blitz-panel

The new language will appear in the language selection menu of Blitz Panel.

Note: An application name and description seen on the panel are localized (page 456) via the /etc/
blitz-panel/app.conf file.

4.2. Blitz Panel app showcase 463

Blitz Identity Provider, version 5.23

4.2.5 Viewing logs

The operation of the blitz-panel service is recorded into a separate log. To view the log, open the

blitz-panel.log file in the /var/log/identityblitz/ directory.

sudo vim /var/log/identityblitz/blitz-panel.log

4.2. Blitz Panel app showcase 464

	Functional specification
	Administration
	Deployment
	Deployment architecture
	System requirements
	Operating systems
	Minimum requirements
	Recommended requirements for cluster

	General installation instructions
	Step 1. JDK
	Step 2. Memcached
	Step 3. DBMS
	Step 4. RabbitMQ
	Step 5. Blitz Identity Provider
	Step 6. Configuration files synchronization
	Step 7. Web Server
	Step 8. LDAP directory

	Express instructions for various operating systems
	Limitations when using instructions
	Rocky Linux, AlmaLinux, Oracle Linux, RHEL
	Step 1. JDK
	Step 2. Memcached
	Step 3. PostgreSQL
	Step 4. RabbitMQ
	Step 5. 389 Directory Server
	Step 6. Nginx
	Step 7. Blitz Identity Provider

	The first steps after installation
	Configure launch options for Blitz Identity Provider services
	Logging in to Admin console
	License key installation
	Administrator account management
	Restarting Blitz Identity Provider services
	Deleting files used for installation

	Basic configuration
	User account attributes
	What is an account attribute?
	Configuring the available attributes
	Stored attributes
	Computed attributes
	Input value conversion rules
	Output value conversion rules
	Setting up attribute purpose

	Connecting attribute storages
	Types of storage
	Connecting storage via LDAP
	Connecting to storage via REST
	Service for user search
	Service for receiving user data
	Verification service for user login and password
	Service for changing user password
	Service for adding a new user
	Service for changing user data
	Service for deleting user

	Configuring internal storage

	Authentication
	How to work with authentication settings
	General settings
	Password policies
	Security key management
	Configuring security keys
	Logging in via WebAuthn, Passkey, FIDO2
	Login confirmation with WebAuthn, Passkey, FIDO2, U2F

	Logging in using login and password
	Logging in with electronic signature tool
	Configuring the authentication method in the Admin console
	Using and updating the plug-in

	Logging in via external identification services
	Logging in with proxy authentication
	Logging in using operating system session
	Domain controller (Kerberos server) configuration
	Settings in Blitz Identity Provider admin console
	Users’ browsers configuration
	Blitz Identity Provider application launch settings
	Web Server configurations
	Debugging operating system session login problems

	Logging in with email
	Step 1. Add the method to blitz.conf
	Step 2. Configure the method in the console

	Logging in with confirmation codes
	Logging in from known device
	Logging in by one-time link
	Logging in by QR code
	Automatic user identification by session properties
	Step 1. Create the login procedure
	Step 2. Add a method to blitz.conf
	Step 3. Configure the method in the console
	Step 4. Customization of texts

	Log-in confirmation with a HMAC-based one-time password (HOTP)
	Time-based one-time password log-in confirmation (TOTP)
	Binding devices to user accounts
	Binding of hardware keyfobs
	Binding a mobile application

	Confirmation codes sent in SMS and push notifications
	Confirmation codes sent by email
	Log-in confirmation via Duo Mobile
	Re-confirmation when logging in from known device
	Confirmation by answering security question
	Step 1. Add method to blitz.conf
	Step 2. Create directory of security questions
	Step 3. Configure method in console

	Confirmation by incoming call
	Step 1. Add the method to blitz.conf
	Step 2. Configure the method in the console

	Configuring an external authentication method
	Customizing the Impersonalization Procedure

	External identity providers
	How to set up login via external identity providers
	International providers
	Apple ID
	Google
	Facebook

	Login via another Blitz Identity Provider setup
	Account linking settings
	Basic configuration
	Advanced configuration

	Customizing user services
	General settings
	User registration
	Registration form
	Registration service settings
	Registration procedure
	Changing the text in the User agreement

	User profile
	Displaying user attributes
	Additional parameters

	Access recovery
	Console settings
	Form texts

	User administration
	User account management
	User search
	Adding a user
	View and edit user attributes
	Editing attributes
	Resetting sessions
	Changing the password
	View and unlink external providers
	Binding devices for 2FA with a one-time password
	Binding Duo Mobile
	Group Membership Management
	Viewing, assigning, and revoking rights
	Memorized devices and browsers
	Security keys
	Permissions granted to applications

	Managing user groups
	Enabling the display of groups in blitz.conf
	Working with groups

	Access rights management

	Notifications and sending messages
	Configuring connection to SMS gateway
	Connection to the service of sending push notifications
	Configuring the connection to the SMTP gateway

	Access to applications and network services
	Registering applications in Blitz Identity Provider
	About applications
	Creating a new application account

	Operation schemes of SSO technologies
	Connecting a web app via OIDC
	Connecting a mobile app via OIDC
	Connecting an app via SAML

	Configuring SAML and WS-Federation
	Connection via SAML 1.0/1.1/2.0
	Connection via WS-Federation
	Uploading SAML metadata
	Configuring SAML attribute

	OAuth 2.0 and OpenID Connect 1.0
	Configuring the application
	General OAuth 2.0 settings
	Adding attributes to an identity token
	Configuring Dynamic OAuth 2.0 Client Registration

	Simple
	Interaction via the REST API
	Access to network services via RADIUS
	Step 1. Configure the RADIUS Server
	Step 2. Configure the application
	Step 3. Configuration on the network service side

	Customization with Java code
	Login procedures and their creation
	About the login procedures
	Creating a procedure

	Ready-made login procedures
	Forced two-factor authentication
	Limiting the list of available first factor methods
	Log in only with a certain attribute value
	Prohibiting login after account expiration
	Log in only from certain networks
	Prohibition of work in several simultaneous sessions
	Saving a list of user groups in claims
	Displaying an announcement to the user at login
	Procedure
	Adding a procedure to blitz.conf

	Request for user to enter attribute or actualize phone and email
	Requesting the user to enter a security question
	Registration of security key (WebAuthn, Passkey, FIDO2) at login
	Display a list of value selections to the user at login
	Procedure
	Adding a procedure to blitz.conf

	Functions and methods of various purposes in login procedures
	Obtaining the user’s geodata
	User session reset
	Invoking custom errors in script
	Analyzing application tags

	Customization of the logic of operations with data storages
	Customization principle
	Configuration
	Writing a custom procedure

	Procedures for binding external user accounts
	User registration in external identity provider
	Discovering external account name

	Design and UI texts
	Login page
	Editing the default template
	Creating and modifying new templates using the constructor
	Creating and modifying new templates in manual mode

	User profile
	Header logo
	Footer logo
	Color scheme customization

	Multilanguage support
	Interface text settings
	Web interface texts
	Email and SMS templates
	Device and browser names
	Messages for different applications
	Auxiliary application messages (pipes)

	Logos for external provider log-in buttons

	Configuration file settings
	Configuration file list
	Settings in blitz.conf file
	Logins and passwords
	Number of password verifications
	Password change at login
	System names of login and password fields

	Attributes
	External attribute validator
	Attribute translator

	CAPTCHA
	Queue server
	Sending events to queue server
	Queue server as a message broker

	Stores and databases
	Storing objects in Couchbase
	Reading the Couchbase Server cluster configuration
	Object storage time
	Advanced PostgreSQL connection settings
	Advanced LDAP connection settings
	Geodatabase
	Several DBMSs usage

	Blitz Identity Provider domain
	Users
	Blocking inactive users
	Prohibit reuse of the remote user ID

	WebAuthn, Passkey, FIDO2, U2F provider certificates
	OIDC, SAML, and external identity providers
	OIDC Discovery service
	Call addresses of external providers
	External SAML provider

	Logging incomplete login attempts
	Transferring security events to file or Kafka
	Storing application settings in separate files
	SSO session duration

	Admin console settings
	Logging in to admin console via SSO
	Session limit
	Roles and permissions for the console
	Changing console admin password

	Configuring Token Exchange
	Step 1. Create service access rules
	Step 2. Configuring access token exchange

	Security, maintenance, and troubleshooting
	Viewing security events
	Application performance monitoring
	Standard monitoring service
	Using Grafana and Prometheus

	Problem solving
	Security gateway

	Integration
	Preparing for integration
	Selecting an interaction protocol

	OIDC application integration
	How to register the application correctly
	Connecting a web application
	Connection settings
	Ready-made libraries
	Getting the authorization code
	Getting tokens
	ID token
	Checking the access token through the introspection service
	Verification of the access token by the application
	Logout

	Connecting a mobile app
	Connection settings
	Ready-made libraries
	Dynamic registration of an application instance
	User’s initial login
	Getting the authorization code
	Getting tokens by an application instance
	User re-login
	User switching or logging out
	Opening web resources from the application
	Login to the application using a QR code

	Connecting Smart Device (IoT) applications
	General information
	Connection settings
	Getting the authorization code
	Getting a security token

	Getting user attributes
	Ensuring connection security

	SAML application integration
	How to register the application correctly
	Connecting the application via SAML
	Connection data
	Ready-made libraries
	Principle of integration
	Identification and authentication
	Logout

	User management API
	General information
	REST API versions
	REST API access modes
	User access mode
	System access mode

	Accounts
	Registration
	Search
	Attributes
	Getting attributes
	Changing an attribute
	Changing the phone number
	Changing the email address

	Passwords
	Changing the password
	Changing the password of subordinate account

	Authentication modes
	Checking the status
	Changing authentication modes

	User properties
	Obtaining properties
	Adding, modifying, and deleting properties

	TOTP
	Checking for TOTP availability
	TOTP linking
	Deleting the linking

	Account status
	Checking account status
	Changing the account status

	External providers
	List of external providers
	Linking a provider by ID
	Linking a provider
	Deleting a provider linking
	Obtaining a user access token

	Audit events
	Known devices and sessions
	List of known devices
	Deleting a device from the list
	Resetting user sessions

	Security questions
	Checking for a question
	Checking the answer
	Setting or changing a question
	Deleting a question

	Permissions issued by the user
	List of permissions
	Revocation of permission

	Mobile apps
	List of mobile apps
	Unlinking from a mobile app account

	Deleting an account

	User groups
	Getting group attributes by id
	Search for a group by attribute
	Creating a group
	Changing group attributes
	Deleting a group
	Getting a list of users in a group
	Adding users
	Removing users

	Access rights
	List of user rights
	List of application rights
	Rights in relation to the user
	Rights in relation to a group of users
	Rights in relation to the application
	Assignment of rights
	Revocation of rights
	The rights of the master user in relation to the slave

	Advanced features
	Additional authentication method
	Request handler service
	Transmission of the authentication result
	Method verification service

	Invoking the auxiliary application at the moment of login
	Request to open the application
	Returning the user to Blitz Identity Provider

	Administration API
	Getting application settings
	Application registration
	Changing application settings
	Deleting an application

	Invoking a third-party user registration application
	Registration Initiation Service
	Registration completion service

	Authentication API
	Settings for using the API
	Interaction scheme
	Starting the login process
	Logging in using login and password
	Login by phone and confirmation code
	Logging in with email
	Login by QR code
	Confirmation of login by confirmation code

	Modules
	Blitz Keeper security gateway
	About Blitz Keeper
	Installing the blitz-keeper service
	Configuring Blitz Keeper
	Creating service access rules
	Configuring access token exchange
	Viewing logs

	Blitz Panel app showcase
	About Blitz Panel
	Installing the blitz-panel service
	Blitz Panel configuration
	Blitz Panel design and localization
	Appearance modification
	Adding a language

	Viewing logs

